.TH "unbdb5" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME unbdb5 \- {un,or}bdb5: step in uncsd2by1 .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcunbdb5\fP (m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info)" .br .RI "\fBCUNBDB5\fP " .ti -1c .RI "subroutine \fBdorbdb5\fP (m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info)" .br .RI "\fBDORBDB5\fP " .ti -1c .RI "subroutine \fBsorbdb5\fP (m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info)" .br .RI "\fBSORBDB5\fP " .ti -1c .RI "subroutine \fBzunbdb5\fP (m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info)" .br .RI "\fBZUNBDB5\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cunbdb5 (integer m1, integer m2, integer n, complex, dimension(*) x1, integer incx1, complex, dimension(*) x2, integer incx2, complex, dimension(ldq1,*) q1, integer ldq1, complex, dimension(ldq2,*) q2, integer ldq2, complex, dimension(*) work, integer lwork, integer info)" .PP \fBCUNBDB5\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CUNBDB5 orthogonalizes the column vector !> X = [ X1 ] !> [ X2 ] !> with respect to the columns of !> Q = [ Q1 ] \&. !> [ Q2 ] !> The columns of Q must be orthonormal\&. !> !> If the projection is zero according to Kahan's !> criterion, then some other vector from the orthogonal complement !> is returned\&. This vector is chosen in an arbitrary but deterministic !> way\&. !> !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM1\fP .PP .nf !> M1 is INTEGER !> The dimension of X1 and the number of rows in Q1\&. 0 <= M1\&. !> .fi .PP .br \fIM2\fP .PP .nf !> M2 is INTEGER !> The dimension of X2 and the number of rows in Q2\&. 0 <= M2\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns in Q1 and Q2\&. 0 <= N\&. !> .fi .PP .br \fIX1\fP .PP .nf !> X1 is COMPLEX array, dimension (M1) !> On entry, the top part of the vector to be orthogonalized\&. !> On exit, the top part of the projected vector\&. !> .fi .PP .br \fIINCX1\fP .PP .nf !> INCX1 is INTEGER !> Increment for entries of X1\&. !> .fi .PP .br \fIX2\fP .PP .nf !> X2 is COMPLEX array, dimension (M2) !> On entry, the bottom part of the vector to be !> orthogonalized\&. On exit, the bottom part of the projected !> vector\&. !> .fi .PP .br \fIINCX2\fP .PP .nf !> INCX2 is INTEGER !> Increment for entries of X2\&. !> .fi .PP .br \fIQ1\fP .PP .nf !> Q1 is COMPLEX array, dimension (LDQ1, N) !> The top part of the orthonormal basis matrix\&. !> .fi .PP .br \fILDQ1\fP .PP .nf !> LDQ1 is INTEGER !> The leading dimension of Q1\&. LDQ1 >= M1\&. !> .fi .PP .br \fIQ2\fP .PP .nf !> Q2 is COMPLEX array, dimension (LDQ2, N) !> The bottom part of the orthonormal basis matrix\&. !> .fi .PP .br \fILDQ2\fP .PP .nf !> LDQ2 is INTEGER !> The leading dimension of Q2\&. LDQ2 >= M2\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX array, dimension (LWORK) !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= N\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB154\fP of file \fBcunbdb5\&.f\fP\&. .SS "subroutine dorbdb5 (integer m1, integer m2, integer n, double precision, dimension(*) x1, integer incx1, double precision, dimension(*) x2, integer incx2, double precision, dimension(ldq1,*) q1, integer ldq1, double precision, dimension(ldq2,*) q2, integer ldq2, double precision, dimension(*) work, integer lwork, integer info)" .PP \fBDORBDB5\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DORBDB5 orthogonalizes the column vector !> X = [ X1 ] !> [ X2 ] !> with respect to the columns of !> Q = [ Q1 ] \&. !> [ Q2 ] !> The columns of Q must be orthonormal\&. !> !> If the projection is zero according to Kahan's !> criterion, then some other vector from the orthogonal complement !> is returned\&. This vector is chosen in an arbitrary but deterministic !> way\&. !> !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM1\fP .PP .nf !> M1 is INTEGER !> The dimension of X1 and the number of rows in Q1\&. 0 <= M1\&. !> .fi .PP .br \fIM2\fP .PP .nf !> M2 is INTEGER !> The dimension of X2 and the number of rows in Q2\&. 0 <= M2\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns in Q1 and Q2\&. 0 <= N\&. !> .fi .PP .br \fIX1\fP .PP .nf !> X1 is DOUBLE PRECISION array, dimension (M1) !> On entry, the top part of the vector to be orthogonalized\&. !> On exit, the top part of the projected vector\&. !> .fi .PP .br \fIINCX1\fP .PP .nf !> INCX1 is INTEGER !> Increment for entries of X1\&. !> .fi .PP .br \fIX2\fP .PP .nf !> X2 is DOUBLE PRECISION array, dimension (M2) !> On entry, the bottom part of the vector to be !> orthogonalized\&. On exit, the bottom part of the projected !> vector\&. !> .fi .PP .br \fIINCX2\fP .PP .nf !> INCX2 is INTEGER !> Increment for entries of X2\&. !> .fi .PP .br \fIQ1\fP .PP .nf !> Q1 is DOUBLE PRECISION array, dimension (LDQ1, N) !> The top part of the orthonormal basis matrix\&. !> .fi .PP .br \fILDQ1\fP .PP .nf !> LDQ1 is INTEGER !> The leading dimension of Q1\&. LDQ1 >= M1\&. !> .fi .PP .br \fIQ2\fP .PP .nf !> Q2 is DOUBLE PRECISION array, dimension (LDQ2, N) !> The bottom part of the orthonormal basis matrix\&. !> .fi .PP .br \fILDQ2\fP .PP .nf !> LDQ2 is INTEGER !> The leading dimension of Q2\&. LDQ2 >= M2\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (LWORK) !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= N\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB154\fP of file \fBdorbdb5\&.f\fP\&. .SS "subroutine sorbdb5 (integer m1, integer m2, integer n, real, dimension(*) x1, integer incx1, real, dimension(*) x2, integer incx2, real, dimension(ldq1,*) q1, integer ldq1, real, dimension(ldq2,*) q2, integer ldq2, real, dimension(*) work, integer lwork, integer info)" .PP \fBSORBDB5\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SORBDB5 orthogonalizes the column vector !> X = [ X1 ] !> [ X2 ] !> with respect to the columns of !> Q = [ Q1 ] \&. !> [ Q2 ] !> The columns of Q must be orthonormal\&. !> !> If the projection is zero according to Kahan's !> criterion, then some other vector from the orthogonal complement !> is returned\&. This vector is chosen in an arbitrary but deterministic !> way\&. !> !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM1\fP .PP .nf !> M1 is INTEGER !> The dimension of X1 and the number of rows in Q1\&. 0 <= M1\&. !> .fi .PP .br \fIM2\fP .PP .nf !> M2 is INTEGER !> The dimension of X2 and the number of rows in Q2\&. 0 <= M2\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns in Q1 and Q2\&. 0 <= N\&. !> .fi .PP .br \fIX1\fP .PP .nf !> X1 is REAL array, dimension (M1) !> On entry, the top part of the vector to be orthogonalized\&. !> On exit, the top part of the projected vector\&. !> .fi .PP .br \fIINCX1\fP .PP .nf !> INCX1 is INTEGER !> Increment for entries of X1\&. !> .fi .PP .br \fIX2\fP .PP .nf !> X2 is REAL array, dimension (M2) !> On entry, the bottom part of the vector to be !> orthogonalized\&. On exit, the bottom part of the projected !> vector\&. !> .fi .PP .br \fIINCX2\fP .PP .nf !> INCX2 is INTEGER !> Increment for entries of X2\&. !> .fi .PP .br \fIQ1\fP .PP .nf !> Q1 is REAL array, dimension (LDQ1, N) !> The top part of the orthonormal basis matrix\&. !> .fi .PP .br \fILDQ1\fP .PP .nf !> LDQ1 is INTEGER !> The leading dimension of Q1\&. LDQ1 >= M1\&. !> .fi .PP .br \fIQ2\fP .PP .nf !> Q2 is REAL array, dimension (LDQ2, N) !> The bottom part of the orthonormal basis matrix\&. !> .fi .PP .br \fILDQ2\fP .PP .nf !> LDQ2 is INTEGER !> The leading dimension of Q2\&. LDQ2 >= M2\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (LWORK) !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= N\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB154\fP of file \fBsorbdb5\&.f\fP\&. .SS "subroutine zunbdb5 (integer m1, integer m2, integer n, complex*16, dimension(*) x1, integer incx1, complex*16, dimension(*) x2, integer incx2, complex*16, dimension(ldq1,*) q1, integer ldq1, complex*16, dimension(ldq2,*) q2, integer ldq2, complex*16, dimension(*) work, integer lwork, integer info)" .PP \fBZUNBDB5\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZUNBDB5 orthogonalizes the column vector !> X = [ X1 ] !> [ X2 ] !> with respect to the columns of !> Q = [ Q1 ] \&. !> [ Q2 ] !> The columns of Q must be orthonormal\&. !> !> If the projection is zero according to Kahan's !> criterion, then some other vector from the orthogonal complement !> is returned\&. This vector is chosen in an arbitrary but deterministic !> way\&. !> !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM1\fP .PP .nf !> M1 is INTEGER !> The dimension of X1 and the number of rows in Q1\&. 0 <= M1\&. !> .fi .PP .br \fIM2\fP .PP .nf !> M2 is INTEGER !> The dimension of X2 and the number of rows in Q2\&. 0 <= M2\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns in Q1 and Q2\&. 0 <= N\&. !> .fi .PP .br \fIX1\fP .PP .nf !> X1 is COMPLEX*16 array, dimension (M1) !> On entry, the top part of the vector to be orthogonalized\&. !> On exit, the top part of the projected vector\&. !> .fi .PP .br \fIINCX1\fP .PP .nf !> INCX1 is INTEGER !> Increment for entries of X1\&. !> .fi .PP .br \fIX2\fP .PP .nf !> X2 is COMPLEX*16 array, dimension (M2) !> On entry, the bottom part of the vector to be !> orthogonalized\&. On exit, the bottom part of the projected !> vector\&. !> .fi .PP .br \fIINCX2\fP .PP .nf !> INCX2 is INTEGER !> Increment for entries of X2\&. !> .fi .PP .br \fIQ1\fP .PP .nf !> Q1 is COMPLEX*16 array, dimension (LDQ1, N) !> The top part of the orthonormal basis matrix\&. !> .fi .PP .br \fILDQ1\fP .PP .nf !> LDQ1 is INTEGER !> The leading dimension of Q1\&. LDQ1 >= M1\&. !> .fi .PP .br \fIQ2\fP .PP .nf !> Q2 is COMPLEX*16 array, dimension (LDQ2, N) !> The bottom part of the orthonormal basis matrix\&. !> .fi .PP .br \fILDQ2\fP .PP .nf !> LDQ2 is INTEGER !> The leading dimension of Q2\&. LDQ2 >= M2\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (LWORK) !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= N\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB154\fP of file \fBzunbdb5\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.