.TH "trtrs" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME trtrs \- trtrs: triangular solve .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBctrtrs\fP (uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)" .br .RI "\fBCTRTRS\fP " .ti -1c .RI "subroutine \fBdtrtrs\fP (uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)" .br .RI "\fBDTRTRS\fP " .ti -1c .RI "subroutine \fBstrtrs\fP (uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)" .br .RI "\fBSTRTRS\fP " .ti -1c .RI "subroutine \fBztrtrs\fP (uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)" .br .RI "\fBZTRTRS\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine ctrtrs (character uplo, character trans, character diag, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fBCTRTRS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CTRTRS solves a triangular system of the form !> !> A * X = B, A**T * X = B, or A**H * X = B, !> !> where A is a triangular matrix of order N, and B is an N-by-NRHS matrix\&. !> !> This subroutine verifies that A is nonsingular, but callers should note that only exact !> singularity is detected\&. It is conceivable for one or more diagonal elements of A to be !> subnormally tiny numbers without this subroutine signalling an error\&. !> !> If a possible loss of numerical precision due to near-singular matrices is a concern, the !> caller should verify that A is nonsingular within some tolerance before calling this subroutine\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular\&. !> .fi .PP .br \fITRANS\fP .PP .nf !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !> .fi .PP .br \fIDIAG\fP .PP .nf !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension (LDA,N) !> The triangular matrix A\&. If UPLO = 'U', the leading N-by-N !> upper triangular part of the array A contains the upper !> triangular matrix, and the strictly lower triangular part of !> A is not referenced\&. If UPLO = 'L', the leading N-by-N lower !> triangular part of the array A contains the lower triangular !> matrix, and the strictly upper triangular part of A is not !> referenced\&. If DIAG = 'U', the diagonal elements of A are !> also not referenced and are assumed to be 1\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B\&. !> On exit, if INFO = 0, the solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element of A is exactly zero, !> indicating that the matrix is singular and the solutions !> X have not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB144\fP of file \fBctrtrs\&.f\fP\&. .SS "subroutine dtrtrs (character uplo, character trans, character diag, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fBDTRTRS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DTRTRS solves a triangular system of the form !> !> A * X = B or A**T * X = B, !> !> where A is a triangular matrix of order N, and B is an N-by-NRHS matrix\&. !> !> This subroutine verifies that A is nonsingular, but callers should note that only exact !> singularity is detected\&. It is conceivable for one or more diagonal elements of A to be !> subnormally tiny numbers without this subroutine signalling an error\&. !> !> If a possible loss of numerical precision due to near-singular matrices is a concern, the !> caller should verify that A is nonsingular within some tolerance before calling this subroutine\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular\&. !> .fi .PP .br \fITRANS\fP .PP .nf !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose = Transpose) !> .fi .PP .br \fIDIAG\fP .PP .nf !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is DOUBLE PRECISION array, dimension (LDA,N) !> The triangular matrix A\&. If UPLO = 'U', the leading N-by-N !> upper triangular part of the array A contains the upper !> triangular matrix, and the strictly lower triangular part of !> A is not referenced\&. If UPLO = 'L', the leading N-by-N lower !> triangular part of the array A contains the lower triangular !> matrix, and the strictly upper triangular part of A is not !> referenced\&. If DIAG = 'U', the diagonal elements of A are !> also not referenced and are assumed to be 1\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B\&. !> On exit, if INFO = 0, the solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element of A is exactly zero, !> indicating that the matrix is singular and the solutions !> X have not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB144\fP of file \fBdtrtrs\&.f\fP\&. .SS "subroutine strtrs (character uplo, character trans, character diag, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fBSTRTRS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> STRTRS solves a triangular system of the form !> !> A * X = B or A**T * X = B, !> !> where A is a triangular matrix of order N, and B is an N-by-NRHS matrix\&. !> !> This subroutine verifies that A is nonsingular, but callers should note that only exact !> singularity is detected\&. It is conceivable for one or more diagonal elements of A to be !> subnormally tiny numbers without this subroutine signalling an error\&. !> !> If a possible loss of numerical precision due to near-singular matrices is a concern, the !> caller should verify that A is nonsingular within some tolerance before calling this subroutine\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular\&. !> .fi .PP .br \fITRANS\fP .PP .nf !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose = Transpose) !> .fi .PP .br \fIDIAG\fP .PP .nf !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension (LDA,N) !> The triangular matrix A\&. If UPLO = 'U', the leading N-by-N !> upper triangular part of the array A contains the upper !> triangular matrix, and the strictly lower triangular part of !> A is not referenced\&. If UPLO = 'L', the leading N-by-N lower !> triangular part of the array A contains the lower triangular !> matrix, and the strictly upper triangular part of A is not !> referenced\&. If DIAG = 'U', the diagonal elements of A are !> also not referenced and are assumed to be 1\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B\&. !> On exit, if INFO = 0, the solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element of A is exactly zero, !> indicating that the matrix is singular and the solutions !> X have not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB144\fP of file \fBstrtrs\&.f\fP\&. .SS "subroutine ztrtrs (character uplo, character trans, character diag, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fBZTRTRS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZTRTRS solves a triangular system of the form !> !> A * X = B, A**T * X = B, or A**H * X = B, !> !> where A is a triangular matrix of order N, and B is an N-by-NRHS matrix\&. !> !> This subroutine verifies that A is nonsingular, but callers should note that only exact !> singularity is detected\&. It is conceivable for one or more diagonal elements of A to be !> subnormally tiny numbers without this subroutine signalling an error\&. !> !> If a possible loss of numerical precision due to near-singular matrices is a concern, the !> caller should verify that A is nonsingular within some tolerance before calling this subroutine\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular\&. !> .fi .PP .br \fITRANS\fP .PP .nf !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !> .fi .PP .br \fIDIAG\fP .PP .nf !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> The triangular matrix A\&. If UPLO = 'U', the leading N-by-N !> upper triangular part of the array A contains the upper !> triangular matrix, and the strictly lower triangular part of !> A is not referenced\&. If UPLO = 'L', the leading N-by-N lower !> triangular part of the array A contains the lower triangular !> matrix, and the strictly upper triangular part of A is not !> referenced\&. If DIAG = 'U', the diagonal elements of A are !> also not referenced and are assumed to be 1\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B\&. !> On exit, if INFO = 0, the solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element of A is exactly zero, !> indicating that the matrix is singular and the solutions !> X have not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB144\fP of file \fBztrtrs\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.