.TH "trti2" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME trti2 \- trti2: triangular inverse, level 2 .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBctrti2\fP (uplo, diag, n, a, lda, info)" .br .RI "\fBCTRTI2\fP computes the inverse of a triangular matrix (unblocked algorithm)\&. " .ti -1c .RI "subroutine \fBdtrti2\fP (uplo, diag, n, a, lda, info)" .br .RI "\fBDTRTI2\fP computes the inverse of a triangular matrix (unblocked algorithm)\&. " .ti -1c .RI "subroutine \fBstrti2\fP (uplo, diag, n, a, lda, info)" .br .RI "\fBSTRTI2\fP computes the inverse of a triangular matrix (unblocked algorithm)\&. " .ti -1c .RI "subroutine \fBztrti2\fP (uplo, diag, n, a, lda, info)" .br .RI "\fBZTRTI2\fP computes the inverse of a triangular matrix (unblocked algorithm)\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine ctrti2 (character uplo, character diag, integer n, complex, dimension( lda, * ) a, integer lda, integer info)" .PP \fBCTRTI2\fP computes the inverse of a triangular matrix (unblocked algorithm)\&. .PP \fBPurpose:\fP .RS 4 .PP .nf CTRTI2 computes the inverse of a complex upper or lower triangular matrix\&. This is the Level 2 BLAS version of the algorithm\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the matrix A is upper or lower triangular\&. = 'U': Upper triangular = 'L': Lower triangular .fi .PP .br \fIDIAG\fP .PP .nf DIAG is CHARACTER*1 Specifies whether or not the matrix A is unit triangular\&. = 'N': Non-unit triangular = 'U': Unit triangular .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the triangular matrix A\&. If UPLO = 'U', the leading n by n upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced\&. If UPLO = 'L', the leading n by n lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced\&. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1\&. On exit, the (triangular) inverse of the original matrix, in the same storage format\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -k, the k-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB109\fP of file \fBctrti2\&.f\fP\&. .SS "subroutine dtrti2 (character uplo, character diag, integer n, double precision, dimension( lda, * ) a, integer lda, integer info)" .PP \fBDTRTI2\fP computes the inverse of a triangular matrix (unblocked algorithm)\&. .PP \fBPurpose:\fP .RS 4 .PP .nf DTRTI2 computes the inverse of a real upper or lower triangular matrix\&. This is the Level 2 BLAS version of the algorithm\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the matrix A is upper or lower triangular\&. = 'U': Upper triangular = 'L': Lower triangular .fi .PP .br \fIDIAG\fP .PP .nf DIAG is CHARACTER*1 Specifies whether or not the matrix A is unit triangular\&. = 'N': Non-unit triangular = 'U': Unit triangular .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the triangular matrix A\&. If UPLO = 'U', the leading n by n upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced\&. If UPLO = 'L', the leading n by n lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced\&. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1\&. On exit, the (triangular) inverse of the original matrix, in the same storage format\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -k, the k-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB109\fP of file \fBdtrti2\&.f\fP\&. .SS "subroutine strti2 (character uplo, character diag, integer n, real, dimension( lda, * ) a, integer lda, integer info)" .PP \fBSTRTI2\fP computes the inverse of a triangular matrix (unblocked algorithm)\&. .PP \fBPurpose:\fP .RS 4 .PP .nf STRTI2 computes the inverse of a real upper or lower triangular matrix\&. This is the Level 2 BLAS version of the algorithm\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the matrix A is upper or lower triangular\&. = 'U': Upper triangular = 'L': Lower triangular .fi .PP .br \fIDIAG\fP .PP .nf DIAG is CHARACTER*1 Specifies whether or not the matrix A is unit triangular\&. = 'N': Non-unit triangular = 'U': Unit triangular .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) On entry, the triangular matrix A\&. If UPLO = 'U', the leading n by n upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced\&. If UPLO = 'L', the leading n by n lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced\&. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1\&. On exit, the (triangular) inverse of the original matrix, in the same storage format\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -k, the k-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB109\fP of file \fBstrti2\&.f\fP\&. .SS "subroutine ztrti2 (character uplo, character diag, integer n, complex*16, dimension( lda, * ) a, integer lda, integer info)" .PP \fBZTRTI2\fP computes the inverse of a triangular matrix (unblocked algorithm)\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZTRTI2 computes the inverse of a complex upper or lower triangular matrix\&. This is the Level 2 BLAS version of the algorithm\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the matrix A is upper or lower triangular\&. = 'U': Upper triangular = 'L': Lower triangular .fi .PP .br \fIDIAG\fP .PP .nf DIAG is CHARACTER*1 Specifies whether or not the matrix A is unit triangular\&. = 'N': Non-unit triangular = 'U': Unit triangular .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the triangular matrix A\&. If UPLO = 'U', the leading n by n upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced\&. If UPLO = 'L', the leading n by n lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced\&. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1\&. On exit, the (triangular) inverse of the original matrix, in the same storage format\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -k, the k-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB109\fP of file \fBztrti2\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.