.TH "trsyl3" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME trsyl3 \- trsyl3: Sylvester equation, level 3 .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBctrsyl3\fP (trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, swork, ldswork, info)" .br .RI "\fBCTRSYL3\fP " .ti -1c .RI "subroutine \fBdtrsyl3\fP (trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, iwork, liwork, swork, ldswork, info)" .br .RI "\fBDTRSYL3\fP " .ti -1c .RI "subroutine \fBstrsyl3\fP (trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, iwork, liwork, swork, ldswork, info)" .br .RI "\fBSTRSYL3\fP " .ti -1c .RI "subroutine \fBztrsyl3\fP (trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, swork, ldswork, info)" .br .RI "\fBZTRSYL3\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine ctrsyl3 (character trana, character tranb, integer isgn, integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldc, * ) c, integer ldc, real scale, real, dimension( ldswork, * ) swork, integer ldswork, integer info)" .PP \fBCTRSYL3\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CTRSYL3 solves the complex Sylvester matrix equation: !> !> op(A)*X + X*op(B) = scale*C or !> op(A)*X - X*op(B) = scale*C, !> !> where op(A) = A or A**H, and A and B are both upper triangular\&. A is !> M-by-M and B is N-by-N; the right hand side C and the solution X are !> M-by-N; and scale is an output scale factor, set <= 1 to avoid !> overflow in X\&. !> !> This is the block version of the algorithm\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANA\fP .PP .nf !> TRANA is CHARACTER*1 !> Specifies the option op(A): !> = 'N': op(A) = A (No transpose) !> = 'C': op(A) = A**H (Conjugate transpose) !> .fi .PP .br \fITRANB\fP .PP .nf !> TRANB is CHARACTER*1 !> Specifies the option op(B): !> = 'N': op(B) = B (No transpose) !> = 'C': op(B) = B**H (Conjugate transpose) !> .fi .PP .br \fIISGN\fP .PP .nf !> ISGN is INTEGER !> Specifies the sign in the equation: !> = +1: solve op(A)*X + X*op(B) = scale*C !> = -1: solve op(A)*X - X*op(B) = scale*C !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The order of the matrix A, and the number of rows in the !> matrices X and C\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix B, and the number of columns in the !> matrices X and C\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension (LDA,M) !> The upper triangular matrix A\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX array, dimension (LDB,N) !> The upper triangular matrix B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is COMPLEX array, dimension (LDC,N) !> On entry, the M-by-N right hand side matrix C\&. !> On exit, C is overwritten by the solution matrix X\&. !> .fi .PP .br \fILDC\fP .PP .nf !> LDC is INTEGER !> The leading dimension of the array C\&. LDC >= max(1,M) !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is REAL !> The scale factor, scale, set <= 1 to avoid overflow in X\&. !> .fi .PP .br \fISWORK\fP .PP .nf !> SWORK is REAL array, dimension (MAX(2, ROWS), MAX(1,COLS))\&. !> On exit, if INFO = 0, SWORK(1) returns the optimal value ROWS !> and SWORK(2) returns the optimal COLS\&. !> .fi .PP .br \fILDSWORK\fP .PP .nf !> LDSWORK is INTEGER !> LDSWORK >= MAX(2,ROWS), where ROWS = ((M + NB - 1) / NB + 1) !> and NB is the optimal block size\&. !> !> If LDSWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal dimensions of the SWORK matrix, !> returns these values as the first and second entry of the SWORK !> matrix, and no error message related LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> = 1: A and B have common or very close eigenvalues; perturbed !> values were used to solve the equation (but the matrices !> A and B are unchanged)\&. !> .fi .PP .RE .PP .PP Definition at line \fB167\fP of file \fBctrsyl3\&.f\fP\&. .SS "subroutine dtrsyl3 (character trana, character tranb, integer isgn, integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldc, * ) c, integer ldc, double precision scale, integer, dimension( * ) iwork, integer liwork, double precision, dimension( ldswork, * ) swork, integer ldswork, integer info)" .PP \fBDTRSYL3\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DTRSYL3 solves the real Sylvester matrix equation: !> !> op(A)*X + X*op(B) = scale*C or !> op(A)*X - X*op(B) = scale*C, !> !> where op(A) = A or A**T, and A and B are both upper quasi- !> triangular\&. A is M-by-M and B is N-by-N; the right hand side C and !> the solution X are M-by-N; and scale is an output scale factor, set !> <= 1 to avoid overflow in X\&. !> !> A and B must be in Schur canonical form (as returned by DHSEQR), that !> is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; !> each 2-by-2 diagonal block has its diagonal elements equal and its !> off-diagonal elements of opposite sign\&. !> !> This is the block version of the algorithm\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANA\fP .PP .nf !> TRANA is CHARACTER*1 !> Specifies the option op(A): !> = 'N': op(A) = A (No transpose) !> = 'T': op(A) = A**T (Transpose) !> = 'C': op(A) = A**H (Conjugate transpose = Transpose) !> .fi .PP .br \fITRANB\fP .PP .nf !> TRANB is CHARACTER*1 !> Specifies the option op(B): !> = 'N': op(B) = B (No transpose) !> = 'T': op(B) = B**T (Transpose) !> = 'C': op(B) = B**H (Conjugate transpose = Transpose) !> .fi .PP .br \fIISGN\fP .PP .nf !> ISGN is INTEGER !> Specifies the sign in the equation: !> = +1: solve op(A)*X + X*op(B) = scale*C !> = -1: solve op(A)*X - X*op(B) = scale*C !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The order of the matrix A, and the number of rows in the !> matrices X and C\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix B, and the number of columns in the !> matrices X and C\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is DOUBLE PRECISION array, dimension (LDA,M) !> The upper quasi-triangular matrix A, in Schur canonical form\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is DOUBLE PRECISION array, dimension (LDB,N) !> The upper quasi-triangular matrix B, in Schur canonical form\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is DOUBLE PRECISION array, dimension (LDC,N) !> On entry, the M-by-N right hand side matrix C\&. !> On exit, C is overwritten by the solution matrix X\&. !> .fi .PP .br \fILDC\fP .PP .nf !> LDC is INTEGER !> The leading dimension of the array C\&. LDC >= max(1,M) !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is DOUBLE PRECISION !> The scale factor, scale, set <= 1 to avoid overflow in X\&. !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK\&. !> .fi .PP .br \fILIWORK\fP .PP .nf !> IWORK is INTEGER !> The dimension of the array IWORK\&. LIWORK >= ((M + NB - 1) / NB + 1) !> + ((N + NB - 1) / NB + 1), where NB is the optimal block size\&. !> !> If LIWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal dimension of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA\&. !> .fi .PP .br \fISWORK\fP .PP .nf !> SWORK is DOUBLE PRECISION array, dimension (MAX(2, ROWS), !> MAX(1,COLS))\&. !> On exit, if INFO = 0, SWORK(1) returns the optimal value ROWS !> and SWORK(2) returns the optimal COLS\&. !> .fi .PP .br \fILDSWORK\fP .PP .nf !> LDSWORK is INTEGER !> LDSWORK >= MAX(2,ROWS), where ROWS = ((M + NB - 1) / NB + 1) !> and NB is the optimal block size\&. !> !> If LDSWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal dimensions of the SWORK matrix, !> returns these values as the first and second entry of the SWORK !> matrix, and no error message related LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> = 1: A and B have common or very close eigenvalues; perturbed !> values were used to solve the equation (but the matrices !> A and B are unchanged)\&. !> .fi .PP .RE .PP .PP Definition at line \fB197\fP of file \fBdtrsyl3\&.f\fP\&. .SS "subroutine strsyl3 (character trana, character tranb, integer isgn, integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldc, * ) c, integer ldc, real scale, integer, dimension( * ) iwork, integer liwork, real, dimension( ldswork, * ) swork, integer ldswork, integer info)" .PP \fBSTRSYL3\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> STRSYL3 solves the real Sylvester matrix equation: !> !> op(A)*X + X*op(B) = scale*C or !> op(A)*X - X*op(B) = scale*C, !> !> where op(A) = A or A**T, and A and B are both upper quasi- !> triangular\&. A is M-by-M and B is N-by-N; the right hand side C and !> the solution X are M-by-N; and scale is an output scale factor, set !> <= 1 to avoid overflow in X\&. !> !> A and B must be in Schur canonical form (as returned by SHSEQR), that !> is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; !> each 2-by-2 diagonal block has its diagonal elements equal and its !> off-diagonal elements of opposite sign\&. !> !> This is the block version of the algorithm\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANA\fP .PP .nf !> TRANA is CHARACTER*1 !> Specifies the option op(A): !> = 'N': op(A) = A (No transpose) !> = 'T': op(A) = A**T (Transpose) !> = 'C': op(A) = A**H (Conjugate transpose = Transpose) !> .fi .PP .br \fITRANB\fP .PP .nf !> TRANB is CHARACTER*1 !> Specifies the option op(B): !> = 'N': op(B) = B (No transpose) !> = 'T': op(B) = B**T (Transpose) !> = 'C': op(B) = B**H (Conjugate transpose = Transpose) !> .fi .PP .br \fIISGN\fP .PP .nf !> ISGN is INTEGER !> Specifies the sign in the equation: !> = +1: solve op(A)*X + X*op(B) = scale*C !> = -1: solve op(A)*X - X*op(B) = scale*C !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The order of the matrix A, and the number of rows in the !> matrices X and C\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix B, and the number of columns in the !> matrices X and C\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension (LDA,M) !> The upper quasi-triangular matrix A, in Schur canonical form\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,N) !> The upper quasi-triangular matrix B, in Schur canonical form\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is REAL array, dimension (LDC,N) !> On entry, the M-by-N right hand side matrix C\&. !> On exit, C is overwritten by the solution matrix X\&. !> .fi .PP .br \fILDC\fP .PP .nf !> LDC is INTEGER !> The leading dimension of the array C\&. LDC >= max(1,M) !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is REAL !> The scale factor, scale, set <= 1 to avoid overflow in X\&. !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK\&. !> .fi .PP .br \fILIWORK\fP .PP .nf !> IWORK is INTEGER !> The dimension of the array IWORK\&. LIWORK >= ((M + NB - 1) / NB + 1) !> + ((N + NB - 1) / NB + 1), where NB is the optimal block size\&. !> !> If LIWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal dimension of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA\&. !> .fi .PP .br \fISWORK\fP .PP .nf !> SWORK is REAL array, dimension (MAX(2, ROWS), !> MAX(1,COLS))\&. !> On exit, if INFO = 0, SWORK(1) returns the optimal value ROWS !> and SWORK(2) returns the optimal COLS\&. !> .fi .PP .br \fILDSWORK\fP .PP .nf !> LDSWORK is INTEGER !> LDSWORK >= MAX(2,ROWS), where ROWS = ((M + NB - 1) / NB + 1) !> and NB is the optimal block size\&. !> !> If LDSWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal dimensions of the SWORK matrix, !> returns these values as the first and second entry of the SWORK !> matrix, and no error message related LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> = 1: A and B have common or very close eigenvalues; perturbed !> values were used to solve the equation (but the matrices !> A and B are unchanged)\&. !> .fi .PP .RE .PP .PP Definition at line \fB196\fP of file \fBstrsyl3\&.f\fP\&. .SS "subroutine ztrsyl3 (character trana, character tranb, integer isgn, integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldc, * ) c, integer ldc, double precision scale, double precision, dimension( ldswork, * ) swork, integer ldswork, integer info)" .PP \fBZTRSYL3\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZTRSYL3 solves the complex Sylvester matrix equation: !> !> op(A)*X + X*op(B) = scale*C or !> op(A)*X - X*op(B) = scale*C, !> !> where op(A) = A or A**H, and A and B are both upper triangular\&. A is !> M-by-M and B is N-by-N; the right hand side C and the solution X are !> M-by-N; and scale is an output scale factor, set <= 1 to avoid !> overflow in X\&. !> !> This is the block version of the algorithm\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANA\fP .PP .nf !> TRANA is CHARACTER*1 !> Specifies the option op(A): !> = 'N': op(A) = A (No transpose) !> = 'C': op(A) = A**H (Conjugate transpose) !> .fi .PP .br \fITRANB\fP .PP .nf !> TRANB is CHARACTER*1 !> Specifies the option op(B): !> = 'N': op(B) = B (No transpose) !> = 'C': op(B) = B**H (Conjugate transpose) !> .fi .PP .br \fIISGN\fP .PP .nf !> ISGN is INTEGER !> Specifies the sign in the equation: !> = +1: solve op(A)*X + X*op(B) = scale*C !> = -1: solve op(A)*X - X*op(B) = scale*C !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The order of the matrix A, and the number of rows in the !> matrices X and C\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix B, and the number of columns in the !> matrices X and C\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,M) !> The upper triangular matrix A\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,N) !> The upper triangular matrix B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N right hand side matrix C\&. !> On exit, C is overwritten by the solution matrix X\&. !> .fi .PP .br \fILDC\fP .PP .nf !> LDC is INTEGER !> The leading dimension of the array C\&. LDC >= max(1,M) !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is DOUBLE PRECISION !> The scale factor, scale, set <= 1 to avoid overflow in X\&. !> .fi .PP .br \fISWORK\fP .PP .nf !> SWORK is DOUBLE PRECISION array, dimension (MAX(2, ROWS), !> MAX(1,COLS))\&. !> On exit, if INFO = 0, SWORK(1) returns the optimal value ROWS !> and SWORK(2) returns the optimal COLS\&. !> .fi .PP .br \fILDSWORK\fP .PP .nf !> LDSWORK is INTEGER !> LDSWORK >= MAX(2,ROWS), where ROWS = ((M + NB - 1) / NB + 1) !> and NB is the optimal block size\&. !> !> If LDSWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal dimensions of the SWORK matrix, !> returns these values as the first and second entry of the SWORK !> matrix, and no error message related LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> = 1: A and B have common or very close eigenvalues; perturbed !> values were used to solve the equation (but the matrices !> A and B are unchanged)\&. !> .fi .PP .RE .PP .PP Definition at line \fB168\fP of file \fBztrsyl3\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.