.TH "trsyl" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME trsyl \- trsyl: Sylvester equation .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBctrsyl\fP (trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)" .br .RI "\fBCTRSYL\fP " .ti -1c .RI "subroutine \fBdtrsyl\fP (trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)" .br .RI "\fBDTRSYL\fP " .ti -1c .RI "subroutine \fBstrsyl\fP (trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)" .br .RI "\fBSTRSYL\fP " .ti -1c .RI "subroutine \fBztrsyl\fP (trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)" .br .RI "\fBZTRSYL\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine ctrsyl (character trana, character tranb, integer isgn, integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldc, * ) c, integer ldc, real scale, integer info)" .PP \fBCTRSYL\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CTRSYL solves the complex Sylvester matrix equation: !> !> op(A)*X + X*op(B) = scale*C or !> op(A)*X - X*op(B) = scale*C, !> !> where op(A) = A or A**H, and A and B are both upper triangular\&. A is !> M-by-M and B is N-by-N; the right hand side C and the solution X are !> M-by-N; and scale is an output scale factor, set <= 1 to avoid !> overflow in X\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANA\fP .PP .nf !> TRANA is CHARACTER*1 !> Specifies the option op(A): !> = 'N': op(A) = A (No transpose) !> = 'C': op(A) = A**H (Conjugate transpose) !> .fi .PP .br \fITRANB\fP .PP .nf !> TRANB is CHARACTER*1 !> Specifies the option op(B): !> = 'N': op(B) = B (No transpose) !> = 'C': op(B) = B**H (Conjugate transpose) !> .fi .PP .br \fIISGN\fP .PP .nf !> ISGN is INTEGER !> Specifies the sign in the equation: !> = +1: solve op(A)*X + X*op(B) = scale*C !> = -1: solve op(A)*X - X*op(B) = scale*C !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The order of the matrix A, and the number of rows in the !> matrices X and C\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix B, and the number of columns in the !> matrices X and C\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension (LDA,M) !> The upper triangular matrix A\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX array, dimension (LDB,N) !> The upper triangular matrix B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is COMPLEX array, dimension (LDC,N) !> On entry, the M-by-N right hand side matrix C\&. !> On exit, C is overwritten by the solution matrix X\&. !> .fi .PP .br \fILDC\fP .PP .nf !> LDC is INTEGER !> The leading dimension of the array C\&. LDC >= max(1,M) !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is REAL !> The scale factor, scale, set <= 1 to avoid overflow in X\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> = 1: A and B have common or very close eigenvalues; perturbed !> values were used to solve the equation (but the matrices !> A and B are unchanged)\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB155\fP of file \fBctrsyl\&.f\fP\&. .SS "subroutine dtrsyl (character trana, character tranb, integer isgn, integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldc, * ) c, integer ldc, double precision scale, integer info)" .PP \fBDTRSYL\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DTRSYL solves the real Sylvester matrix equation: !> !> op(A)*X + X*op(B) = scale*C or !> op(A)*X - X*op(B) = scale*C, !> !> where op(A) = A or A**T, and A and B are both upper quasi- !> triangular\&. A is M-by-M and B is N-by-N; the right hand side C and !> the solution X are M-by-N; and scale is an output scale factor, set !> <= 1 to avoid overflow in X\&. !> !> A and B must be in Schur canonical form (as returned by DHSEQR), that !> is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; !> each 2-by-2 diagonal block has its diagonal elements equal and its !> off-diagonal elements of opposite sign\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANA\fP .PP .nf !> TRANA is CHARACTER*1 !> Specifies the option op(A): !> = 'N': op(A) = A (No transpose) !> = 'T': op(A) = A**T (Transpose) !> = 'C': op(A) = A**H (Conjugate transpose = Transpose) !> .fi .PP .br \fITRANB\fP .PP .nf !> TRANB is CHARACTER*1 !> Specifies the option op(B): !> = 'N': op(B) = B (No transpose) !> = 'T': op(B) = B**T (Transpose) !> = 'C': op(B) = B**H (Conjugate transpose = Transpose) !> .fi .PP .br \fIISGN\fP .PP .nf !> ISGN is INTEGER !> Specifies the sign in the equation: !> = +1: solve op(A)*X + X*op(B) = scale*C !> = -1: solve op(A)*X - X*op(B) = scale*C !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The order of the matrix A, and the number of rows in the !> matrices X and C\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix B, and the number of columns in the !> matrices X and C\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is DOUBLE PRECISION array, dimension (LDA,M) !> The upper quasi-triangular matrix A, in Schur canonical form\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is DOUBLE PRECISION array, dimension (LDB,N) !> The upper quasi-triangular matrix B, in Schur canonical form\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is DOUBLE PRECISION array, dimension (LDC,N) !> On entry, the M-by-N right hand side matrix C\&. !> On exit, C is overwritten by the solution matrix X\&. !> .fi .PP .br \fILDC\fP .PP .nf !> LDC is INTEGER !> The leading dimension of the array C\&. LDC >= max(1,M) !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is DOUBLE PRECISION !> The scale factor, scale, set <= 1 to avoid overflow in X\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> = 1: A and B have common or very close eigenvalues; perturbed !> values were used to solve the equation (but the matrices !> A and B are unchanged)\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB162\fP of file \fBdtrsyl\&.f\fP\&. .SS "subroutine strsyl (character trana, character tranb, integer isgn, integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldc, * ) c, integer ldc, real scale, integer info)" .PP \fBSTRSYL\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> STRSYL solves the real Sylvester matrix equation: !> !> op(A)*X + X*op(B) = scale*C or !> op(A)*X - X*op(B) = scale*C, !> !> where op(A) = A or A**T, and A and B are both upper quasi- !> triangular\&. A is M-by-M and B is N-by-N; the right hand side C and !> the solution X are M-by-N; and scale is an output scale factor, set !> <= 1 to avoid overflow in X\&. !> !> A and B must be in Schur canonical form (as returned by SHSEQR), that !> is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; !> each 2-by-2 diagonal block has its diagonal elements equal and its !> off-diagonal elements of opposite sign\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANA\fP .PP .nf !> TRANA is CHARACTER*1 !> Specifies the option op(A): !> = 'N': op(A) = A (No transpose) !> = 'T': op(A) = A**T (Transpose) !> = 'C': op(A) = A**H (Conjugate transpose = Transpose) !> .fi .PP .br \fITRANB\fP .PP .nf !> TRANB is CHARACTER*1 !> Specifies the option op(B): !> = 'N': op(B) = B (No transpose) !> = 'T': op(B) = B**T (Transpose) !> = 'C': op(B) = B**H (Conjugate transpose = Transpose) !> .fi .PP .br \fIISGN\fP .PP .nf !> ISGN is INTEGER !> Specifies the sign in the equation: !> = +1: solve op(A)*X + X*op(B) = scale*C !> = -1: solve op(A)*X - X*op(B) = scale*C !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The order of the matrix A, and the number of rows in the !> matrices X and C\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix B, and the number of columns in the !> matrices X and C\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension (LDA,M) !> The upper quasi-triangular matrix A, in Schur canonical form\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,N) !> The upper quasi-triangular matrix B, in Schur canonical form\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is REAL array, dimension (LDC,N) !> On entry, the M-by-N right hand side matrix C\&. !> On exit, C is overwritten by the solution matrix X\&. !> .fi .PP .br \fILDC\fP .PP .nf !> LDC is INTEGER !> The leading dimension of the array C\&. LDC >= max(1,M) !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is REAL !> The scale factor, scale, set <= 1 to avoid overflow in X\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> = 1: A and B have common or very close eigenvalues; perturbed !> values were used to solve the equation (but the matrices !> A and B are unchanged)\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB162\fP of file \fBstrsyl\&.f\fP\&. .SS "subroutine ztrsyl (character trana, character tranb, integer isgn, integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldc, * ) c, integer ldc, double precision scale, integer info)" .PP \fBZTRSYL\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZTRSYL solves the complex Sylvester matrix equation: !> !> op(A)*X + X*op(B) = scale*C or !> op(A)*X - X*op(B) = scale*C, !> !> where op(A) = A or A**H, and A and B are both upper triangular\&. A is !> M-by-M and B is N-by-N; the right hand side C and the solution X are !> M-by-N; and scale is an output scale factor, set <= 1 to avoid !> overflow in X\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANA\fP .PP .nf !> TRANA is CHARACTER*1 !> Specifies the option op(A): !> = 'N': op(A) = A (No transpose) !> = 'C': op(A) = A**H (Conjugate transpose) !> .fi .PP .br \fITRANB\fP .PP .nf !> TRANB is CHARACTER*1 !> Specifies the option op(B): !> = 'N': op(B) = B (No transpose) !> = 'C': op(B) = B**H (Conjugate transpose) !> .fi .PP .br \fIISGN\fP .PP .nf !> ISGN is INTEGER !> Specifies the sign in the equation: !> = +1: solve op(A)*X + X*op(B) = scale*C !> = -1: solve op(A)*X - X*op(B) = scale*C !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The order of the matrix A, and the number of rows in the !> matrices X and C\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix B, and the number of columns in the !> matrices X and C\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,M) !> The upper triangular matrix A\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,N) !> The upper triangular matrix B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N right hand side matrix C\&. !> On exit, C is overwritten by the solution matrix X\&. !> .fi .PP .br \fILDC\fP .PP .nf !> LDC is INTEGER !> The leading dimension of the array C\&. LDC >= max(1,M) !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is DOUBLE PRECISION !> The scale factor, scale, set <= 1 to avoid overflow in X\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> = 1: A and B have common or very close eigenvalues; perturbed !> values were used to solve the equation (but the matrices !> A and B are unchanged)\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB155\fP of file \fBztrsyl\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.