.TH "tfttr" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME tfttr \- tfttr: triangular matrix, RFP (tf) to full (tr) .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBctfttr\fP (transr, uplo, n, arf, a, lda, info)" .br .RI "\fBCTFTTR\fP copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR)\&. " .ti -1c .RI "subroutine \fBdtfttr\fP (transr, uplo, n, arf, a, lda, info)" .br .RI "\fBDTFTTR\fP copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR)\&. " .ti -1c .RI "subroutine \fBstfttr\fP (transr, uplo, n, arf, a, lda, info)" .br .RI "\fBSTFTTR\fP copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR)\&. " .ti -1c .RI "subroutine \fBztfttr\fP (transr, uplo, n, arf, a, lda, info)" .br .RI "\fBZTFTTR\fP copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR)\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine ctfttr (character transr, character uplo, integer n, complex, dimension( 0: * ) arf, complex, dimension( 0: lda\-1, 0: * ) a, integer lda, integer info)" .PP \fBCTFTTR\fP copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR)\&. .PP \fBPurpose:\fP .RS 4 .PP .nf CTFTTR copies a triangular matrix A from rectangular full packed format (TF) to standard full format (TR)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANSR\fP .PP .nf TRANSR is CHARACTER*1 = 'N': ARF is in Normal format; = 'C': ARF is in Conjugate-transpose format; .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIARF\fP .PP .nf ARF is COMPLEX array, dimension ( N*(N+1)/2 ), On entry, the upper or lower triangular matrix A stored in RFP format\&. For a further discussion see Notes below\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension ( LDA, N ) On exit, the triangular matrix A\&. If UPLO = 'U', the leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced\&. If UPLO = 'L', the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf We first consider Standard Packed Format when N is even\&. We give an example where N = 6\&. AP is Upper AP is Lower 00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper\&. The lower triangle A(4:6,0:2) consists of conjugate-transpose of the first three columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:2,0:2) consists of conjugate-transpose of the last three columns of AP lower\&. To denote conjugate we place -- above the element\&. This covers the case N even and TRANSR = 'N'\&. RFP A RFP A -- -- -- 03 04 05 33 43 53 -- -- 13 14 15 00 44 54 -- 23 24 25 10 11 55 33 34 35 20 21 22 -- 00 44 45 30 31 32 -- -- 01 11 55 40 41 42 -- -- -- 02 12 22 50 51 52 Now let TRANSR = 'C'\&. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above\&. One therefore gets: RFP A RFP A -- -- -- -- -- -- -- -- -- -- 03 13 23 33 00 01 02 33 00 10 20 30 40 50 -- -- -- -- -- -- -- -- -- -- 04 14 24 34 44 11 12 43 44 11 21 31 41 51 -- -- -- -- -- -- -- -- -- -- 05 15 25 35 45 55 22 53 54 55 22 32 42 52 We next consider Standard Packed Format when N is odd\&. We give an example where N = 5\&. AP is Upper AP is Lower 00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper\&. The lower triangle A(3:4,0:1) consists of conjugate-transpose of the first two columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:1,1:2) consists of conjugate-transpose of the last two columns of AP lower\&. To denote conjugate we place -- above the element\&. This covers the case N odd and TRANSR = 'N'\&. RFP A RFP A -- -- 02 03 04 00 33 43 -- 12 13 14 10 11 44 22 23 24 20 21 22 -- 00 33 34 30 31 32 -- -- 01 11 44 40 41 42 Now let TRANSR = 'C'\&. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above\&. One therefore gets: RFP A RFP A -- -- -- -- -- -- -- -- -- 02 12 22 00 01 00 10 20 30 40 50 -- -- -- -- -- -- -- -- -- 03 13 23 33 11 33 11 21 31 41 51 -- -- -- -- -- -- -- -- -- 04 14 24 34 44 43 44 22 32 42 52 .fi .PP .RE .PP .PP Definition at line \fB215\fP of file \fBctfttr\&.f\fP\&. .SS "subroutine dtfttr (character transr, character uplo, integer n, double precision, dimension( 0: * ) arf, double precision, dimension( 0: lda\-1, 0: * ) a, integer lda, integer info)" .PP \fBDTFTTR\fP copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR)\&. .PP \fBPurpose:\fP .RS 4 .PP .nf DTFTTR copies a triangular matrix A from rectangular full packed format (TF) to standard full format (TR)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANSR\fP .PP .nf TRANSR is CHARACTER*1 = 'N': ARF is in Normal format; = 'T': ARF is in Transpose format\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrices ARF and A\&. N >= 0\&. .fi .PP .br \fIARF\fP .PP .nf ARF is DOUBLE PRECISION array, dimension (N*(N+1)/2)\&. On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') matrix A in RFP format\&. See the 'Notes' below for more details\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On exit, the triangular matrix A\&. If UPLO = 'U', the leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced\&. If UPLO = 'L', the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf We first consider Rectangular Full Packed (RFP) Format when N is even\&. We give an example where N = 6\&. AP is Upper AP is Lower 00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper\&. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower\&. This covers the case N even and TRANSR = 'N'\&. RFP A RFP A 03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52 Now let TRANSR = 'T'\&. RFP A in both UPLO cases is just the transpose of RFP A above\&. One therefore gets: RFP A RFP A 03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52 We then consider Rectangular Full Packed (RFP) Format when N is odd\&. We give an example where N = 5\&. AP is Upper AP is Lower 00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper\&. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower\&. This covers the case N odd and TRANSR = 'N'\&. RFP A RFP A 02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42 Now let TRANSR = 'T'\&. RFP A in both UPLO cases is just the transpose of RFP A above\&. One therefore gets: RFP A RFP A 02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52 .fi .PP .RE .PP .PP Definition at line \fB195\fP of file \fBdtfttr\&.f\fP\&. .SS "subroutine stfttr (character transr, character uplo, integer n, real, dimension( 0: * ) arf, real, dimension( 0: lda\-1, 0: * ) a, integer lda, integer info)" .PP \fBSTFTTR\fP copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR)\&. .PP \fBPurpose:\fP .RS 4 .PP .nf STFTTR copies a triangular matrix A from rectangular full packed format (TF) to standard full format (TR)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANSR\fP .PP .nf TRANSR is CHARACTER*1 = 'N': ARF is in Normal format; = 'T': ARF is in Transpose format\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrices ARF and A\&. N >= 0\&. .fi .PP .br \fIARF\fP .PP .nf ARF is REAL array, dimension (N*(N+1)/2)\&. On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') matrix A in RFP format\&. See the 'Notes' below for more details\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) On exit, the triangular matrix A\&. If UPLO = 'U', the leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced\&. If UPLO = 'L', the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf We first consider Rectangular Full Packed (RFP) Format when N is even\&. We give an example where N = 6\&. AP is Upper AP is Lower 00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper\&. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower\&. This covers the case N even and TRANSR = 'N'\&. RFP A RFP A 03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52 Now let TRANSR = 'T'\&. RFP A in both UPLO cases is just the transpose of RFP A above\&. One therefore gets: RFP A RFP A 03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52 We then consider Rectangular Full Packed (RFP) Format when N is odd\&. We give an example where N = 5\&. AP is Upper AP is Lower 00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper\&. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower\&. This covers the case N odd and TRANSR = 'N'\&. RFP A RFP A 02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42 Now let TRANSR = 'T'\&. RFP A in both UPLO cases is just the transpose of RFP A above\&. One therefore gets: RFP A RFP A 02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52 .fi .PP .RE .PP .PP Definition at line \fB195\fP of file \fBstfttr\&.f\fP\&. .SS "subroutine ztfttr (character transr, character uplo, integer n, complex*16, dimension( 0: * ) arf, complex*16, dimension( 0: lda\-1, 0: * ) a, integer lda, integer info)" .PP \fBZTFTTR\fP copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR)\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZTFTTR copies a triangular matrix A from rectangular full packed format (TF) to standard full format (TR)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANSR\fP .PP .nf TRANSR is CHARACTER*1 = 'N': ARF is in Normal format; = 'C': ARF is in Conjugate-transpose format; .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIARF\fP .PP .nf ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ), On entry, the upper or lower triangular matrix A stored in RFP format\&. For a further discussion see Notes below\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension ( LDA, N ) On exit, the triangular matrix A\&. If UPLO = 'U', the leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced\&. If UPLO = 'L', the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf We first consider Standard Packed Format when N is even\&. We give an example where N = 6\&. AP is Upper AP is Lower 00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper\&. The lower triangle A(4:6,0:2) consists of conjugate-transpose of the first three columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:2,0:2) consists of conjugate-transpose of the last three columns of AP lower\&. To denote conjugate we place -- above the element\&. This covers the case N even and TRANSR = 'N'\&. RFP A RFP A -- -- -- 03 04 05 33 43 53 -- -- 13 14 15 00 44 54 -- 23 24 25 10 11 55 33 34 35 20 21 22 -- 00 44 45 30 31 32 -- -- 01 11 55 40 41 42 -- -- -- 02 12 22 50 51 52 Now let TRANSR = 'C'\&. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above\&. One therefore gets: RFP A RFP A -- -- -- -- -- -- -- -- -- -- 03 13 23 33 00 01 02 33 00 10 20 30 40 50 -- -- -- -- -- -- -- -- -- -- 04 14 24 34 44 11 12 43 44 11 21 31 41 51 -- -- -- -- -- -- -- -- -- -- 05 15 25 35 45 55 22 53 54 55 22 32 42 52 We next consider Standard Packed Format when N is odd\&. We give an example where N = 5\&. AP is Upper AP is Lower 00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper\&. The lower triangle A(3:4,0:1) consists of conjugate-transpose of the first two columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:1,1:2) consists of conjugate-transpose of the last two columns of AP lower\&. To denote conjugate we place -- above the element\&. This covers the case N odd and TRANSR = 'N'\&. RFP A RFP A -- -- 02 03 04 00 33 43 -- 12 13 14 10 11 44 22 23 24 20 21 22 -- 00 33 34 30 31 32 -- -- 01 11 44 40 41 42 Now let TRANSR = 'C'\&. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above\&. One therefore gets: RFP A RFP A -- -- -- -- -- -- -- -- -- 02 12 22 00 01 00 10 20 30 40 50 -- -- -- -- -- -- -- -- -- 03 13 23 33 11 33 11 21 31 41 51 -- -- -- -- -- -- -- -- -- 04 14 24 34 44 43 44 22 32 42 52 .fi .PP .RE .PP .PP Definition at line \fB215\fP of file \fBztfttr\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.