.TH "SRC/stpttf.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/stpttf.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBstpttf\fP (transr, uplo, n, ap, arf, info)" .br .RI "\fBSTPTTF\fP copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF)\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine stpttf (character transr, character uplo, integer n, real, dimension( 0: * ) ap, real, dimension( 0: * ) arf, integer info)" .PP \fBSTPTTF\fP copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF)\&. .PP \fBPurpose:\fP .RS 4 .PP .nf STPTTF copies a triangular matrix A from standard packed format (TP) to rectangular full packed format (TF)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANSR\fP .PP .nf TRANSR is CHARACTER*1 = 'N': ARF in Normal format is wanted; = 'T': ARF in Conjugate-transpose format is wanted\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIAP\fP .PP .nf AP is REAL array, dimension ( N*(N+1)/2 ), On entry, the upper or lower triangular matrix A, packed columnwise in a linear array\&. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. .fi .PP .br \fIARF\fP .PP .nf ARF is REAL array, dimension ( N*(N+1)/2 ), On exit, the upper or lower triangular matrix A stored in RFP format\&. For a further discussion see Notes below\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf We first consider Rectangular Full Packed (RFP) Format when N is even\&. We give an example where N = 6\&. AP is Upper AP is Lower 00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper\&. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower\&. This covers the case N even and TRANSR = 'N'\&. RFP A RFP A 03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52 Now let TRANSR = 'T'\&. RFP A in both UPLO cases is just the transpose of RFP A above\&. One therefore gets: RFP A RFP A 03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52 We then consider Rectangular Full Packed (RFP) Format when N is odd\&. We give an example where N = 5\&. AP is Upper AP is Lower 00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper\&. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower\&. This covers the case N odd and TRANSR = 'N'\&. RFP A RFP A 02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42 Now let TRANSR = 'T'\&. RFP A in both UPLO cases is just the transpose of RFP A above\&. One therefore gets: RFP A RFP A 02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52 .fi .PP .RE .PP .PP Definition at line \fB185\fP of file \fBstpttf\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.