.TH "SRC/stptrs.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/stptrs.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBstptrs\fP (uplo, trans, diag, n, nrhs, ap, b, ldb, info)" .br .RI "\fBSTPTRS\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine stptrs (character uplo, character trans, character diag, integer n, integer nrhs, real, dimension( * ) ap, real, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fBSTPTRS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> STPTRS solves a triangular system of the form !> !> A * X = B or A**T * X = B, !> !> where A is a triangular matrix of order N stored in packed format, and B is an N-by-NRHS matrix\&. !> !> This subroutine verifies that A is nonsingular, but callers should note that only exact !> singularity is detected\&. It is conceivable for one or more diagonal elements of A to be !> subnormally tiny numbers without this subroutine signalling an error\&. !> !> If a possible loss of numerical precision due to near-singular matrices is a concern, the !> caller should verify that A is nonsingular within some tolerance before calling this subroutine\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular\&. !> .fi .PP .br \fITRANS\fP .PP .nf !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose = Transpose) !> .fi .PP .br \fIDIAG\fP .PP .nf !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is REAL array, dimension (N*(N+1)/2) !> The upper or lower triangular matrix A, packed columnwise in !> a linear array\&. The j-th column of A is stored in the array !> AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B\&. !> On exit, if INFO = 0, the solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element of A is exactly zero, !> indicating that the matrix is singular and the !> solutions X have not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB134\fP of file \fBstptrs\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.