.TH "TESTING/LIN/stpt03.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/LIN/stpt03.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBstpt03\fP (uplo, trans, diag, n, nrhs, ap, scale, cnorm, tscal, x, ldx, b, ldb, work, resid)" .br .RI "\fBSTPT03\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine stpt03 (character uplo, character trans, character diag, integer n, integer nrhs, real, dimension( * ) ap, real scale, real, dimension( * ) cnorm, real tscal, real, dimension( ldx, * ) x, integer ldx, real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) work, real resid)" .PP \fBSTPT03\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> STPT03 computes the residual for the solution to a scaled triangular !> system of equations A*x = s*b or A'*x = s*b when the triangular !> matrix A is stored in packed format\&. Here A' is the transpose of A, !> s is a scalar, and x and b are N by NRHS matrices\&. The test ratio is !> the maximum over the number of right hand sides of !> norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), !> where op(A) denotes A or A' and EPS is the machine epsilon\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the matrix A is upper or lower triangular\&. !> = 'U': Upper triangular !> = 'L': Lower triangular !> .fi .PP .br \fITRANS\fP .PP .nf !> TRANS is CHARACTER*1 !> Specifies the operation applied to A\&. !> = 'N': A *x = s*b (No transpose) !> = 'T': A'*x = s*b (Transpose) !> = 'C': A'*x = s*b (Conjugate transpose = Transpose) !> .fi .PP .br \fIDIAG\fP .PP .nf !> DIAG is CHARACTER*1 !> Specifies whether or not the matrix A is unit triangular\&. !> = 'N': Non-unit triangular !> = 'U': Unit triangular !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrices X and B\&. NRHS >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is REAL array, dimension (N*(N+1)/2) !> The upper or lower triangular matrix A, packed columnwise in !> a linear array\&. The j-th column of A is stored in the array !> AP as follows: !> if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', !> AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n\&. !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is REAL !> The scaling factor s used in solving the triangular system\&. !> .fi .PP .br \fICNORM\fP .PP .nf !> CNORM is REAL array, dimension (N) !> The 1-norms of the columns of A, not counting the diagonal\&. !> .fi .PP .br \fITSCAL\fP .PP .nf !> TSCAL is REAL !> The scaling factor used in computing the 1-norms in CNORM\&. !> CNORM actually contains the column norms of TSCAL*A\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is REAL array, dimension (LDX,NRHS) !> The computed solution vectors for the system of linear !> equations\&. !> .fi .PP .br \fILDX\fP .PP .nf !> LDX is INTEGER !> The leading dimension of the array X\&. LDX >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,NRHS) !> The right hand side vectors for the system of linear !> equations\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (N) !> .fi .PP .br \fIRESID\fP .PP .nf !> RESID is REAL !> The maximum over the number of right hand sides of !> norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS )\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB159\fP of file \fBstpt03\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.