.TH "SRC/stprfs.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/stprfs.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBstprfs\fP (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, iwork, info)" .br .RI "\fBSTPRFS\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine stprfs (character uplo, character trans, character diag, integer n, integer nrhs, real, dimension( * ) ap, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)" .PP \fBSTPRFS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> STPRFS provides error bounds and backward error estimates for the !> solution to a system of linear equations with a triangular packed !> coefficient matrix\&. !> !> The solution matrix X must be computed by STPTRS or some other !> means before entering this routine\&. STPRFS does not do iterative !> refinement because doing so cannot improve the backward error\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular\&. !> .fi .PP .br \fITRANS\fP .PP .nf !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose = Transpose) !> .fi .PP .br \fIDIAG\fP .PP .nf !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrices B and X\&. NRHS >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is REAL array, dimension (N*(N+1)/2) !> The upper or lower triangular matrix A, packed columnwise in !> a linear array\&. The j-th column of A is stored in the array !> AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n\&. !> If DIAG = 'U', the diagonal elements of A are not referenced !> and are assumed to be 1\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,NRHS) !> The right hand side matrix B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is REAL array, dimension (LDX,NRHS) !> The solution matrix X\&. !> .fi .PP .br \fILDX\fP .PP .nf !> LDX is INTEGER !> The leading dimension of the array X\&. LDX >= max(1,N)\&. !> .fi .PP .br \fIFERR\fP .PP .nf !> FERR is REAL array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X)\&. !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j)\&. The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error\&. !> .fi .PP .br \fIBERR\fP .PP .nf !> BERR is REAL array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i\&.e\&., the smallest relative change in !> any element of A or B that makes X(j) an exact solution)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (3*N) !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB173\fP of file \fBstprfs\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.