.TH "stev" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME stev \- stev: eig, QR iteration .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBdstev\fP (jobz, n, d, e, z, ldz, work, info)" .br .RI "\fB DSTEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP " .ti -1c .RI "subroutine \fBsstev\fP (jobz, n, d, e, z, ldz, work, info)" .br .RI "\fB SSTEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine dstev (character jobz, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer info)" .PP \fB DSTEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DSTEV computes all eigenvalues and, optionally, eigenvectors of a !> real symmetric tridiagonal matrix A\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the n diagonal elements of the tridiagonal matrix !> A\&. !> On exit, if INFO = 0, the eigenvalues in ascending order\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is DOUBLE PRECISION array, dimension (N-1) !> On entry, the (n-1) subdiagonal elements of the tridiagonal !> matrix A, stored in elements 1 to N-1 of E\&. !> On exit, the contents of E are destroyed\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is DOUBLE PRECISION array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with D(i)\&. !> If JOBZ = 'N', then Z is not referenced\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (max(1,2*N-2)) !> If JOBZ = 'N', WORK is not referenced\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of E did not converge to zero\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB115\fP of file \fBdstev\&.f\fP\&. .SS "subroutine sstev (character jobz, integer n, real, dimension( * ) d, real, dimension( * ) e, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer info)" .PP \fB SSTEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SSTEV computes all eigenvalues and, optionally, eigenvectors of a !> real symmetric tridiagonal matrix A\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is REAL array, dimension (N) !> On entry, the n diagonal elements of the tridiagonal matrix !> A\&. !> On exit, if INFO = 0, the eigenvalues in ascending order\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is REAL array, dimension (N-1) !> On entry, the (n-1) subdiagonal elements of the tridiagonal !> matrix A, stored in elements 1 to N-1 of E\&. !> On exit, the contents of E are destroyed\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is REAL array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with D(i)\&. !> If JOBZ = 'N', then Z is not referenced\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (max(1,2*N-2)) !> If JOBZ = 'N', WORK is not referenced\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of E did not converge to zero\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB115\fP of file \fBsstev\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.