.TH "stegr" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME stegr \- stegr: eig, bisection, see stemr .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcstegr\fP (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)" .br .RI "\fBCSTEGR\fP " .ti -1c .RI "subroutine \fBdstegr\fP (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)" .br .RI "\fBDSTEGR\fP " .ti -1c .RI "subroutine \fBsstegr\fP (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)" .br .RI "\fBSSTEGR\fP " .ti -1c .RI "subroutine \fBzstegr\fP (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)" .br .RI "\fBZSTEGR\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cstegr (character jobz, character range, integer n, real, dimension( * ) d, real, dimension( * ) e, real vl, real vu, integer il, integer iu, real abstol, integer m, real, dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, integer, dimension( * ) isuppz, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)" .PP \fBCSTEGR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CSTEGR computes selected eigenvalues and, optionally, eigenvectors !> of a real symmetric tridiagonal matrix T\&. Any such unreduced matrix has !> a well defined set of pairwise different real eigenvalues, the corresponding !> real eigenvectors are pairwise orthogonal\&. !> !> The spectrum may be computed either completely or partially by specifying !> either an interval (VL,VU] or a range of indices IL:IU for the desired !> eigenvalues\&. !> !> CSTEGR is a compatibility wrapper around the improved CSTEMR routine\&. !> See SSTEMR for further details\&. !> !> One important change is that the ABSTOL parameter no longer provides any !> benefit and hence is no longer used\&. !> !> Note : CSTEGR and CSTEMR work only on machines which follow !> IEEE-754 floating-point standard in their handling of infinities and !> NaNs\&. Normal execution may create these exceptional values and hence !> may abort due to a floating point exception in environments which !> do not conform to the IEEE-754 standard\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors\&. !> .fi .PP .br \fIRANGE\fP .PP .nf !> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found\&. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found\&. !> = 'I': the IL-th through IU-th eigenvalues will be found\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is REAL array, dimension (N) !> On entry, the N diagonal elements of the tridiagonal matrix !> T\&. On exit, D is overwritten\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is REAL array, dimension (N) !> On entry, the (N-1) subdiagonal elements of the tridiagonal !> matrix T in elements 1 to N-1 of E\&. E(N) need not be set on !> input, but is used internally as workspace\&. !> On exit, E is overwritten\&. !> .fi .PP .br \fIVL\fP .PP .nf !> VL is REAL !> !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIVU\fP .PP .nf !> VU is REAL !> !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIIL\fP .PP .nf !> IL is INTEGER !> !> If RANGE='I', the index of the !> smallest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIIU\fP .PP .nf !> IU is INTEGER !> !> If RANGE='I', the index of the !> largest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIABSTOL\fP .PP .nf !> ABSTOL is REAL !> Unused\&. Was the absolute error tolerance for the !> eigenvalues/eigenvectors in previous versions\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The total number of eigenvalues found\&. 0 <= M <= N\&. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is REAL array, dimension (N) !> The first M elements contain the selected eigenvalues in !> ascending order\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is COMPLEX array, dimension (LDZ, max(1,M) ) !> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z !> contain the orthonormal eigenvectors of the matrix T !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i)\&. !> If JOBZ = 'N', then Z is not referenced\&. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used\&. !> Supplying N columns is always safe\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1, and if !> JOBZ = 'V', then LDZ >= max(1,N)\&. !> .fi .PP .br \fIISUPPZ\fP .PP .nf !> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) !> The support of the eigenvectors in Z, i\&.e\&., the indices !> indicating the nonzero elements in Z\&. The i-th computed eigenvector !> is nonzero only in elements ISUPPZ( 2*i-1 ) through !> ISUPPZ( 2*i )\&. This is relevant in the case when the matrix !> is split\&. ISUPPZ is only accessed when JOBZ is 'V' and N > 0\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns the optimal !> (and minimal) LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= max(1,18*N) !> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'\&. !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (LIWORK) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK\&. !> .fi .PP .br \fILIWORK\fP .PP .nf !> LIWORK is INTEGER !> The dimension of the array IWORK\&. LIWORK >= max(1,10*N) !> if the eigenvectors are desired, and LIWORK >= max(1,8*N) !> if only the eigenvalues are to be computed\&. !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> On exit, INFO !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = 1X, internal error in SLARRE, !> if INFO = 2X, internal error in CLARRV\&. !> Here, the digit X = ABS( IINFO ) < 10, where IINFO is !> the nonzero error code returned by SLARRE or !> CLARRV, respectively\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Inderjit Dhillon, IBM Almaden, USA .br Osni Marques, LBNL/NERSC, USA .br Christof Voemel, LBNL/NERSC, USA .br .RE .PP .PP Definition at line \fB262\fP of file \fBcstegr\&.f\fP\&. .SS "subroutine dstegr (character jobz, character range, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision vl, double precision vu, integer il, integer iu, double precision abstol, integer m, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, integer, dimension( * ) isuppz, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)" .PP \fBDSTEGR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DSTEGR computes selected eigenvalues and, optionally, eigenvectors !> of a real symmetric tridiagonal matrix T\&. Any such unreduced matrix has !> a well defined set of pairwise different real eigenvalues, the corresponding !> real eigenvectors are pairwise orthogonal\&. !> !> The spectrum may be computed either completely or partially by specifying !> either an interval (VL,VU] or a range of indices IL:IU for the desired !> eigenvalues\&. !> !> DSTEGR is a compatibility wrapper around the improved DSTEMR routine\&. !> See DSTEMR for further details\&. !> !> One important change is that the ABSTOL parameter no longer provides any !> benefit and hence is no longer used\&. !> !> Note : DSTEGR and DSTEMR work only on machines which follow !> IEEE-754 floating-point standard in their handling of infinities and !> NaNs\&. Normal execution may create these exceptional values and hence !> may abort due to a floating point exception in environments which !> do not conform to the IEEE-754 standard\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors\&. !> .fi .PP .br \fIRANGE\fP .PP .nf !> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found\&. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found\&. !> = 'I': the IL-th through IU-th eigenvalues will be found\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the N diagonal elements of the tridiagonal matrix !> T\&. On exit, D is overwritten\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is DOUBLE PRECISION array, dimension (N) !> On entry, the (N-1) subdiagonal elements of the tridiagonal !> matrix T in elements 1 to N-1 of E\&. E(N) need not be set on !> input, but is used internally as workspace\&. !> On exit, E is overwritten\&. !> .fi .PP .br \fIVL\fP .PP .nf !> VL is DOUBLE PRECISION !> !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIVU\fP .PP .nf !> VU is DOUBLE PRECISION !> !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIIL\fP .PP .nf !> IL is INTEGER !> !> If RANGE='I', the index of the !> smallest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIIU\fP .PP .nf !> IU is INTEGER !> !> If RANGE='I', the index of the !> largest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIABSTOL\fP .PP .nf !> ABSTOL is DOUBLE PRECISION !> Unused\&. Was the absolute error tolerance for the !> eigenvalues/eigenvectors in previous versions\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The total number of eigenvalues found\&. 0 <= M <= N\&. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is DOUBLE PRECISION array, dimension (N) !> The first M elements contain the selected eigenvalues in !> ascending order\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) !> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z !> contain the orthonormal eigenvectors of the matrix T !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i)\&. !> If JOBZ = 'N', then Z is not referenced\&. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used\&. !> Supplying N columns is always safe\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1, and if !> JOBZ = 'V', then LDZ >= max(1,N)\&. !> .fi .PP .br \fIISUPPZ\fP .PP .nf !> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) !> The support of the eigenvectors in Z, i\&.e\&., the indices !> indicating the nonzero elements in Z\&. The i-th computed eigenvector !> is nonzero only in elements ISUPPZ( 2*i-1 ) through !> ISUPPZ( 2*i )\&. This is relevant in the case when the matrix !> is split\&. ISUPPZ is only accessed when JOBZ is 'V' and N > 0\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns the optimal !> (and minimal) LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= max(1,18*N) !> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'\&. !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (LIWORK) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK\&. !> .fi .PP .br \fILIWORK\fP .PP .nf !> LIWORK is INTEGER !> The dimension of the array IWORK\&. LIWORK >= max(1,10*N) !> if the eigenvectors are desired, and LIWORK >= max(1,8*N) !> if only the eigenvalues are to be computed\&. !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> On exit, INFO !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = 1X, internal error in DLARRE, !> if INFO = 2X, internal error in DLARRV\&. !> Here, the digit X = ABS( IINFO ) < 10, where IINFO is !> the nonzero error code returned by DLARRE or !> DLARRV, respectively\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Inderjit Dhillon, IBM Almaden, USA .br Osni Marques, LBNL/NERSC, USA .br Christof Voemel, LBNL/NERSC, USA .br .RE .PP .PP Definition at line \fB262\fP of file \fBdstegr\&.f\fP\&. .SS "subroutine sstegr (character jobz, character range, integer n, real, dimension( * ) d, real, dimension( * ) e, real vl, real vu, integer il, integer iu, real abstol, integer m, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, integer, dimension( * ) isuppz, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)" .PP \fBSSTEGR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SSTEGR computes selected eigenvalues and, optionally, eigenvectors !> of a real symmetric tridiagonal matrix T\&. Any such unreduced matrix has !> a well defined set of pairwise different real eigenvalues, the corresponding !> real eigenvectors are pairwise orthogonal\&. !> !> The spectrum may be computed either completely or partially by specifying !> either an interval (VL,VU] or a range of indices IL:IU for the desired !> eigenvalues\&. !> !> SSTEGR is a compatibility wrapper around the improved SSTEMR routine\&. !> See SSTEMR for further details\&. !> !> One important change is that the ABSTOL parameter no longer provides any !> benefit and hence is no longer used\&. !> !> Note : SSTEGR and SSTEMR work only on machines which follow !> IEEE-754 floating-point standard in their handling of infinities and !> NaNs\&. Normal execution may create these exceptional values and hence !> may abort due to a floating point exception in environments which !> do not conform to the IEEE-754 standard\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors\&. !> .fi .PP .br \fIRANGE\fP .PP .nf !> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found\&. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found\&. !> = 'I': the IL-th through IU-th eigenvalues will be found\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is REAL array, dimension (N) !> On entry, the N diagonal elements of the tridiagonal matrix !> T\&. On exit, D is overwritten\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is REAL array, dimension (N) !> On entry, the (N-1) subdiagonal elements of the tridiagonal !> matrix T in elements 1 to N-1 of E\&. E(N) need not be set on !> input, but is used internally as workspace\&. !> On exit, E is overwritten\&. !> .fi .PP .br \fIVL\fP .PP .nf !> VL is REAL !> !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIVU\fP .PP .nf !> VU is REAL !> !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIIL\fP .PP .nf !> IL is INTEGER !> !> If RANGE='I', the index of the !> smallest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIIU\fP .PP .nf !> IU is INTEGER !> !> If RANGE='I', the index of the !> largest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIABSTOL\fP .PP .nf !> ABSTOL is REAL !> Unused\&. Was the absolute error tolerance for the !> eigenvalues/eigenvectors in previous versions\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The total number of eigenvalues found\&. 0 <= M <= N\&. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is REAL array, dimension (N) !> The first M elements contain the selected eigenvalues in !> ascending order\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is REAL array, dimension (LDZ, max(1,M) ) !> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z !> contain the orthonormal eigenvectors of the matrix T !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i)\&. !> If JOBZ = 'N', then Z is not referenced\&. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used\&. !> Supplying N columns is always safe\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1, and if !> JOBZ = 'V', then LDZ >= max(1,N)\&. !> .fi .PP .br \fIISUPPZ\fP .PP .nf !> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) !> The support of the eigenvectors in Z, i\&.e\&., the indices !> indicating the nonzero elements in Z\&. The i-th computed eigenvector !> is nonzero only in elements ISUPPZ( 2*i-1 ) through !> ISUPPZ( 2*i )\&. This is relevant in the case when the matrix !> is split\&. ISUPPZ is only accessed when JOBZ is 'V' and N > 0\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns the optimal !> (and minimal) LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= max(1,18*N) !> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'\&. !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (LIWORK) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK\&. !> .fi .PP .br \fILIWORK\fP .PP .nf !> LIWORK is INTEGER !> The dimension of the array IWORK\&. LIWORK >= max(1,10*N) !> if the eigenvectors are desired, and LIWORK >= max(1,8*N) !> if only the eigenvalues are to be computed\&. !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> On exit, INFO !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = 1X, internal error in SLARRE, !> if INFO = 2X, internal error in SLARRV\&. !> Here, the digit X = ABS( IINFO ) < 10, where IINFO is !> the nonzero error code returned by SLARRE or !> SLARRV, respectively\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Inderjit Dhillon, IBM Almaden, USA .br Osni Marques, LBNL/NERSC, USA .br Christof Voemel, LBNL/NERSC, USA .br .RE .PP .PP Definition at line \fB262\fP of file \fBsstegr\&.f\fP\&. .SS "subroutine zstegr (character jobz, character range, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision vl, double precision vu, integer il, integer iu, double precision abstol, integer m, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, integer, dimension( * ) isuppz, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)" .PP \fBZSTEGR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZSTEGR computes selected eigenvalues and, optionally, eigenvectors !> of a real symmetric tridiagonal matrix T\&. Any such unreduced matrix has !> a well defined set of pairwise different real eigenvalues, the corresponding !> real eigenvectors are pairwise orthogonal\&. !> !> The spectrum may be computed either completely or partially by specifying !> either an interval (VL,VU] or a range of indices IL:IU for the desired !> eigenvalues\&. !> !> ZSTEGR is a compatibility wrapper around the improved ZSTEMR routine\&. !> See ZSTEMR for further details\&. !> !> One important change is that the ABSTOL parameter no longer provides any !> benefit and hence is no longer used\&. !> !> Note : ZSTEGR and ZSTEMR work only on machines which follow !> IEEE-754 floating-point standard in their handling of infinities and !> NaNs\&. Normal execution may create these exceptional values and hence !> may abort due to a floating point exception in environments which !> do not conform to the IEEE-754 standard\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors\&. !> .fi .PP .br \fIRANGE\fP .PP .nf !> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found\&. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found\&. !> = 'I': the IL-th through IU-th eigenvalues will be found\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the N diagonal elements of the tridiagonal matrix !> T\&. On exit, D is overwritten\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is DOUBLE PRECISION array, dimension (N) !> On entry, the (N-1) subdiagonal elements of the tridiagonal !> matrix T in elements 1 to N-1 of E\&. E(N) need not be set on !> input, but is used internally as workspace\&. !> On exit, E is overwritten\&. !> .fi .PP .br \fIVL\fP .PP .nf !> VL is DOUBLE PRECISION !> !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIVU\fP .PP .nf !> VU is DOUBLE PRECISION !> !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIIL\fP .PP .nf !> IL is INTEGER !> !> If RANGE='I', the index of the !> smallest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIIU\fP .PP .nf !> IU is INTEGER !> !> If RANGE='I', the index of the !> largest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIABSTOL\fP .PP .nf !> ABSTOL is DOUBLE PRECISION !> Unused\&. Was the absolute error tolerance for the !> eigenvalues/eigenvectors in previous versions\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The total number of eigenvalues found\&. 0 <= M <= N\&. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is DOUBLE PRECISION array, dimension (N) !> The first M elements contain the selected eigenvalues in !> ascending order\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is COMPLEX*16 array, dimension (LDZ, max(1,M) ) !> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z !> contain the orthonormal eigenvectors of the matrix T !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i)\&. !> If JOBZ = 'N', then Z is not referenced\&. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used\&. !> Supplying N columns is always safe\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1, and if !> JOBZ = 'V', then LDZ >= max(1,N)\&. !> .fi .PP .br \fIISUPPZ\fP .PP .nf !> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) !> The support of the eigenvectors in Z, i\&.e\&., the indices !> indicating the nonzero elements in Z\&. The i-th computed eigenvector !> is nonzero only in elements ISUPPZ( 2*i-1 ) through !> ISUPPZ( 2*i )\&. This is relevant in the case when the matrix !> is split\&. ISUPPZ is only accessed when JOBZ is 'V' and N > 0\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns the optimal !> (and minimal) LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= max(1,18*N) !> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'\&. !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (LIWORK) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK\&. !> .fi .PP .br \fILIWORK\fP .PP .nf !> LIWORK is INTEGER !> The dimension of the array IWORK\&. LIWORK >= max(1,10*N) !> if the eigenvectors are desired, and LIWORK >= max(1,8*N) !> if only the eigenvalues are to be computed\&. !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> On exit, INFO !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = 1X, internal error in DLARRE, !> if INFO = 2X, internal error in ZLARRV\&. !> Here, the digit X = ABS( IINFO ) < 10, where IINFO is !> the nonzero error code returned by DLARRE or !> ZLARRV, respectively\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Inderjit Dhillon, IBM Almaden, USA .br Osni Marques, LBNL/NERSC, USA .br Christof Voemel, LBNL/NERSC, USA .br .RE .PP .PP Definition at line \fB262\fP of file \fBzstegr\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.