.TH "stedc" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME stedc \- stedc: eig, divide and conquer .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcstedc\fP (compz, n, d, e, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)" .br .RI "\fBCSTEDC\fP " .ti -1c .RI "subroutine \fBdstedc\fP (compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)" .br .RI "\fBDSTEDC\fP " .ti -1c .RI "subroutine \fBsstedc\fP (compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)" .br .RI "\fBSSTEDC\fP " .ti -1c .RI "subroutine \fBzstedc\fP (compz, n, d, e, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)" .br .RI "\fBZSTEDC\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cstedc (character compz, integer n, real, dimension( * ) d, real, dimension( * ) e, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)" .PP \fBCSTEDC\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CSTEDC computes all eigenvalues and, optionally, eigenvectors of a !> symmetric tridiagonal matrix using the divide and conquer method\&. !> The eigenvectors of a full or band complex Hermitian matrix can also !> be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this !> matrix to tridiagonal form\&. !> !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fICOMPZ\fP .PP .nf !> COMPZ is CHARACTER*1 !> = 'N': Compute eigenvalues only\&. !> = 'I': Compute eigenvectors of tridiagonal matrix also\&. !> = 'V': Compute eigenvectors of original Hermitian matrix !> also\&. On entry, Z contains the unitary matrix used !> to reduce the original matrix to tridiagonal form\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The dimension of the symmetric tridiagonal matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is REAL array, dimension (N) !> On entry, the diagonal elements of the tridiagonal matrix\&. !> On exit, if INFO = 0, the eigenvalues in ascending order\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is REAL array, dimension (N-1) !> On entry, the subdiagonal elements of the tridiagonal matrix\&. !> On exit, E has been destroyed\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is COMPLEX array, dimension (LDZ,N) !> On entry, if COMPZ = 'V', then Z contains the unitary !> matrix used in the reduction to tridiagonal form\&. !> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the !> orthonormal eigenvectors of the original Hermitian matrix, !> and if COMPZ = 'I', Z contains the orthonormal eigenvectors !> of the symmetric tridiagonal matrix\&. !> If COMPZ = 'N', then Z is not referenced\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1\&. !> If eigenvectors are desired, then LDZ >= max(1,N)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. !> If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1\&. !> If COMPZ = 'V' and N > 1, LWORK must be at least N*N\&. !> Note that for COMPZ = 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LWORK need !> only be 1\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK, RWORK and !> IWORK arrays, returns these values as the first entries of !> the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is REAL array, dimension (MAX(1,LRWORK)) !> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK\&. !> .fi .PP .br \fILRWORK\fP .PP .nf !> LRWORK is INTEGER !> The dimension of the array RWORK\&. !> If COMPZ = 'N' or N <= 1, LRWORK must be at least 1\&. !> If COMPZ = 'V' and N > 1, LRWORK must be at least !> 1 + 3*N + 2*N*lg N + 4*N**2 , !> where lg( N ) = smallest integer k such !> that 2**k >= N\&. !> If COMPZ = 'I' and N > 1, LRWORK must be at least !> 1 + 4*N + 2*N**2 \&. !> Note that for COMPZ = 'I' or 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LRWORK !> need only be max(1,2*(N-1))\&. !> !> If LRWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK\&. !> .fi .PP .br \fILIWORK\fP .PP .nf !> LIWORK is INTEGER !> The dimension of the array IWORK\&. !> If COMPZ = 'N' or N <= 1, LIWORK must be at least 1\&. !> If COMPZ = 'V' or N > 1, LIWORK must be at least !> 6 + 6*N + 5*N*lg N\&. !> If COMPZ = 'I' or N > 1, LIWORK must be at least !> 3 + 5*N \&. !> Note that for COMPZ = 'I' or 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LIWORK !> need only be 1\&. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> > 0: The algorithm failed to compute an eigenvalue while !> working on the submatrix lying in rows and columns !> INFO/(N+1) through mod(INFO,N+1)\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Jeff Rutter, Computer Science Division, University of California at Berkeley, USA .RE .PP .PP Definition at line \fB204\fP of file \fBcstedc\&.f\fP\&. .SS "subroutine dstedc (character compz, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)" .PP \fBDSTEDC\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DSTEDC computes all eigenvalues and, optionally, eigenvectors of a !> symmetric tridiagonal matrix using the divide and conquer method\&. !> The eigenvectors of a full or band real symmetric matrix can also be !> found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this !> matrix to tridiagonal form\&. !> !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fICOMPZ\fP .PP .nf !> COMPZ is CHARACTER*1 !> = 'N': Compute eigenvalues only\&. !> = 'I': Compute eigenvectors of tridiagonal matrix also\&. !> = 'V': Compute eigenvectors of original dense symmetric !> matrix also\&. On entry, Z contains the orthogonal !> matrix used to reduce the original matrix to !> tridiagonal form\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The dimension of the symmetric tridiagonal matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the diagonal elements of the tridiagonal matrix\&. !> On exit, if INFO = 0, the eigenvalues in ascending order\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is DOUBLE PRECISION array, dimension (N-1) !> On entry, the subdiagonal elements of the tridiagonal matrix\&. !> On exit, E has been destroyed\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is DOUBLE PRECISION array, dimension (LDZ,N) !> On entry, if COMPZ = 'V', then Z contains the orthogonal !> matrix used in the reduction to tridiagonal form\&. !> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the !> orthonormal eigenvectors of the original symmetric matrix, !> and if COMPZ = 'I', Z contains the orthonormal eigenvectors !> of the symmetric tridiagonal matrix\&. !> If COMPZ = 'N', then Z is not referenced\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1\&. !> If eigenvectors are desired, then LDZ >= max(1,N)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. !> If COMPZ = 'N' or N <= 1 then LWORK must be at least 1\&. !> If COMPZ = 'V' and N > 1 then LWORK must be at least !> ( 1 + 3*N + 2*N*lg N + 4*N**2 ), !> where lg( N ) = smallest integer k such !> that 2**k >= N\&. !> If COMPZ = 'I' and N > 1 then LWORK must be at least !> ( 1 + 4*N + N**2 )\&. !> Note that for COMPZ = 'I' or 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LWORK need !> only be max(1,2*(N-1))\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK\&. !> .fi .PP .br \fILIWORK\fP .PP .nf !> LIWORK is INTEGER !> The dimension of the array IWORK\&. !> If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1\&. !> If COMPZ = 'V' and N > 1 then LIWORK must be at least !> ( 6 + 6*N + 5*N*lg N )\&. !> If COMPZ = 'I' and N > 1 then LIWORK must be at least !> ( 3 + 5*N )\&. !> Note that for COMPZ = 'I' or 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LIWORK !> need only be 1\&. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> > 0: The algorithm failed to compute an eigenvalue while !> working on the submatrix lying in rows and columns !> INFO/(N+1) through mod(INFO,N+1)\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Jeff Rutter, Computer Science Division, University of California at Berkeley, USA .br Modified by Francoise Tisseur, University of Tennessee .RE .PP .PP Definition at line \fB180\fP of file \fBdstedc\&.f\fP\&. .SS "subroutine sstedc (character compz, integer n, real, dimension( * ) d, real, dimension( * ) e, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)" .PP \fBSSTEDC\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SSTEDC computes all eigenvalues and, optionally, eigenvectors of a !> symmetric tridiagonal matrix using the divide and conquer method\&. !> The eigenvectors of a full or band real symmetric matrix can also be !> found if SSYTRD or SSPTRD or SSBTRD has been used to reduce this !> matrix to tridiagonal form\&. !> !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fICOMPZ\fP .PP .nf !> COMPZ is CHARACTER*1 !> = 'N': Compute eigenvalues only\&. !> = 'I': Compute eigenvectors of tridiagonal matrix also\&. !> = 'V': Compute eigenvectors of original dense symmetric !> matrix also\&. On entry, Z contains the orthogonal !> matrix used to reduce the original matrix to !> tridiagonal form\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The dimension of the symmetric tridiagonal matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is REAL array, dimension (N) !> On entry, the diagonal elements of the tridiagonal matrix\&. !> On exit, if INFO = 0, the eigenvalues in ascending order\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is REAL array, dimension (N-1) !> On entry, the subdiagonal elements of the tridiagonal matrix\&. !> On exit, E has been destroyed\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is REAL array, dimension (LDZ,N) !> On entry, if COMPZ = 'V', then Z contains the orthogonal !> matrix used in the reduction to tridiagonal form\&. !> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the !> orthonormal eigenvectors of the original symmetric matrix, !> and if COMPZ = 'I', Z contains the orthonormal eigenvectors !> of the symmetric tridiagonal matrix\&. !> If COMPZ = 'N', then Z is not referenced\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1\&. !> If eigenvectors are desired, then LDZ >= max(1,N)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. !> If COMPZ = 'N' or N <= 1 then LWORK must be at least 1\&. !> If COMPZ = 'V' and N > 1 then LWORK must be at least !> ( 1 + 3*N + 2*N*lg N + 4*N**2 ), !> where lg( N ) = smallest integer k such !> that 2**k >= N\&. !> If COMPZ = 'I' and N > 1 then LWORK must be at least !> ( 1 + 4*N + N**2 )\&. !> Note that for COMPZ = 'I' or 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LWORK need !> only be max(1,2*(N-1))\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK\&. !> .fi .PP .br \fILIWORK\fP .PP .nf !> LIWORK is INTEGER !> The dimension of the array IWORK\&. !> If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1\&. !> If COMPZ = 'V' and N > 1 then LIWORK must be at least !> ( 6 + 6*N + 5*N*lg N )\&. !> If COMPZ = 'I' and N > 1 then LIWORK must be at least !> ( 3 + 5*N )\&. !> Note that for COMPZ = 'I' or 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LIWORK !> need only be 1\&. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> > 0: The algorithm failed to compute an eigenvalue while !> working on the submatrix lying in rows and columns !> INFO/(N+1) through mod(INFO,N+1)\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Jeff Rutter, Computer Science Division, University of California at Berkeley, USA .br Modified by Francoise Tisseur, University of Tennessee .RE .PP .PP Definition at line \fB180\fP of file \fBsstedc\&.f\fP\&. .SS "subroutine zstedc (character compz, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)" .PP \fBZSTEDC\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a !> symmetric tridiagonal matrix using the divide and conquer method\&. !> The eigenvectors of a full or band complex Hermitian matrix can also !> be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this !> matrix to tridiagonal form\&. !> !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fICOMPZ\fP .PP .nf !> COMPZ is CHARACTER*1 !> = 'N': Compute eigenvalues only\&. !> = 'I': Compute eigenvectors of tridiagonal matrix also\&. !> = 'V': Compute eigenvectors of original Hermitian matrix !> also\&. On entry, Z contains the unitary matrix used !> to reduce the original matrix to tridiagonal form\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The dimension of the symmetric tridiagonal matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (N) !> On entry, the diagonal elements of the tridiagonal matrix\&. !> On exit, if INFO = 0, the eigenvalues in ascending order\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is DOUBLE PRECISION array, dimension (N-1) !> On entry, the subdiagonal elements of the tridiagonal matrix\&. !> On exit, E has been destroyed\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is COMPLEX*16 array, dimension (LDZ,N) !> On entry, if COMPZ = 'V', then Z contains the unitary !> matrix used in the reduction to tridiagonal form\&. !> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the !> orthonormal eigenvectors of the original Hermitian matrix, !> and if COMPZ = 'I', Z contains the orthonormal eigenvectors !> of the symmetric tridiagonal matrix\&. !> If COMPZ = 'N', then Z is not referenced\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1\&. !> If eigenvectors are desired, then LDZ >= max(1,N)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. !> If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1\&. !> If COMPZ = 'V' and N > 1, LWORK must be at least N*N\&. !> Note that for COMPZ = 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LWORK need !> only be 1\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK, RWORK and !> IWORK arrays, returns these values as the first entries of !> the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) !> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK\&. !> .fi .PP .br \fILRWORK\fP .PP .nf !> LRWORK is INTEGER !> The dimension of the array RWORK\&. !> If COMPZ = 'N' or N <= 1, LRWORK must be at least 1\&. !> If COMPZ = 'V' and N > 1, LRWORK must be at least !> 1 + 3*N + 2*N*lg N + 4*N**2 , !> where lg( N ) = smallest integer k such !> that 2**k >= N\&. !> If COMPZ = 'I' and N > 1, LRWORK must be at least !> 1 + 4*N + 2*N**2 \&. !> Note that for COMPZ = 'I' or 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LRWORK !> need only be max(1,2*(N-1))\&. !> !> If LRWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK\&. !> .fi .PP .br \fILIWORK\fP .PP .nf !> LIWORK is INTEGER !> The dimension of the array IWORK\&. !> If COMPZ = 'N' or N <= 1, LIWORK must be at least 1\&. !> If COMPZ = 'V' or N > 1, LIWORK must be at least !> 6 + 6*N + 5*N*lg N\&. !> If COMPZ = 'I' or N > 1, LIWORK must be at least !> 3 + 5*N \&. !> Note that for COMPZ = 'I' or 'V', then if N is less than or !> equal to the minimum divide size, usually 25, then LIWORK !> need only be 1\&. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> > 0: The algorithm failed to compute an eigenvalue while !> working on the submatrix lying in rows and columns !> INFO/(N+1) through mod(INFO,N+1)\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Jeff Rutter, Computer Science Division, University of California at Berkeley, USA .RE .PP .PP Definition at line \fB204\fP of file \fBzstedc\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.