.TH "SRC/ssytrd.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/ssytrd.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBssytrd\fP (uplo, n, a, lda, d, e, tau, work, lwork, info)" .br .RI "\fBSSYTRD\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine ssytrd (character uplo, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) d, real, dimension( * ) e, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)" .PP \fBSSYTRD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SSYTRD reduces a real symmetric matrix A to real symmetric !> tridiagonal form T by an orthogonal similarity transformation: !> Q**T * A * Q = T\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension (LDA,N) !> On entry, the symmetric matrix A\&. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced\&. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced\&. !> On exit, if UPLO = 'U', the diagonal and first superdiagonal !> of A are overwritten by the corresponding elements of the !> tridiagonal matrix T, and the elements above the first !> superdiagonal, with the array TAU, represent the orthogonal !> matrix Q as a product of elementary reflectors; if UPLO !> = 'L', the diagonal and first subdiagonal of A are over- !> written by the corresponding elements of the tridiagonal !> matrix T, and the elements below the first subdiagonal, with !> the array TAU, represent the orthogonal matrix Q as a product !> of elementary reflectors\&. See Further Details\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fID\fP .PP .nf !> D is REAL array, dimension (N) !> The diagonal elements of the tridiagonal matrix T: !> D(i) = A(i,i)\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is REAL array, dimension (N-1) !> The off-diagonal elements of the tridiagonal matrix T: !> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is REAL array, dimension (N-1) !> The scalar factors of the elementary reflectors (see Further !> Details)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= 1\&. !> For optimum performance LWORK >= N*NB, where NB is the !> optimal blocksize\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> If UPLO = 'U', the matrix Q is represented as a product of elementary !> reflectors !> !> Q = H(n-1) \&. \&. \&. H(2) H(1)\&. !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in !> A(1:i-1,i+1), and tau in TAU(i)\&. !> !> If UPLO = 'L', the matrix Q is represented as a product of elementary !> reflectors !> !> Q = H(1) H(2) \&. \&. \&. H(n-1)\&. !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), !> and tau in TAU(i)\&. !> !> The contents of A on exit are illustrated by the following examples !> with n = 5: !> !> if UPLO = 'U': if UPLO = 'L': !> !> ( d e v2 v3 v4 ) ( d ) !> ( d e v3 v4 ) ( e d ) !> ( d e v4 ) ( v1 e d ) !> ( d e ) ( v1 v2 e d ) !> ( d ) ( v1 v2 v3 e d ) !> !> where d and e denote diagonal and off-diagonal elements of T, and vi !> denotes an element of the vector defining H(i)\&. !> .fi .PP .RE .PP .PP Definition at line \fB191\fP of file \fBssytrd\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.