.TH "SRC/ssysv_aa.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/ssysv_aa.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBssysv_aa\fP (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)" .br .RI "\fB SSYSV_AA computes the solution to system of linear equations A * X = B for SY matrices\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine ssysv_aa (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) work, integer lwork, integer info)" .PP \fB SSYSV_AA computes the solution to system of linear equations A * X = B for SY matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SSYSV computes the solution to a real system of linear equations !> A * X = B, !> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS !> matrices\&. !> !> Aasen's algorithm is used to factor A as !> A = U**T * T * U, if UPLO = 'U', or !> A = L * T * L**T, if UPLO = 'L', !> where U (or L) is a product of permutation and unit upper (lower) !> triangular matrices, and T is symmetric tridiagonal\&. The factored !> form of A is then used to solve the system of equations A * X = B\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of linear equations, i\&.e\&., the order of the !> matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension (LDA,N) !> On entry, the symmetric matrix A\&. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced\&. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced\&. !> !> On exit, if INFO = 0, the tridiagonal matrix T and the !> multipliers used to obtain the factor U or L from the !> factorization A = U**T*T*U or A = L*T*L**T as computed by !> SSYTRF\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIIPIV\fP .PP .nf !> IPIV is INTEGER array, dimension (N) !> On exit, it contains the details of the interchanges, i\&.e\&., !> the row and column k of A were interchanged with the !> row and column IPIV(k)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B\&. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The length of WORK\&. LWORK >= MAX(1,2*N,3*N-2), and for !> the best performance, LWORK >= MAX(1,N*NB), where NB is !> the optimal blocksize for SSYTRF_AA\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, D(i,i) is exactly zero\&. The factorization !> has been completed, but the block diagonal matrix D is !> exactly singular, so the solution could not be computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB160\fP of file \fBssysv_aa\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.