.TH "SRC/ssygv.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/ssygv.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBssygv\fP (itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)" .br .RI "\fBSSYGV\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine ssygv (integer itype, character jobz, character uplo, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) w, real, dimension( * ) work, integer lwork, integer info)" .PP \fBSSYGV\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SSYGV computes all the eigenvalues, and optionally, the eigenvectors !> of a real generalized symmetric-definite eigenproblem, of the form !> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x\&. !> Here A and B are assumed to be symmetric and B is also !> positive definite\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIITYPE\fP .PP .nf !> ITYPE is INTEGER !> Specifies the problem type to be solved: !> = 1: A*x = (lambda)*B*x !> = 2: A*B*x = (lambda)*x !> = 3: B*A*x = (lambda)*x !> .fi .PP .br \fIJOBZ\fP .PP .nf !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangles of A and B are stored; !> = 'L': Lower triangles of A and B are stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrices A and B\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension (LDA, N) !> On entry, the symmetric matrix A\&. If UPLO = 'U', the !> leading N-by-N upper triangular part of A contains the !> upper triangular part of the matrix A\&. If UPLO = 'L', !> the leading N-by-N lower triangular part of A contains !> the lower triangular part of the matrix A\&. !> !> On exit, if JOBZ = 'V', then if INFO = 0, A contains the !> matrix Z of eigenvectors\&. The eigenvectors are normalized !> as follows: !> if ITYPE = 1 or 2, Z**T*B*Z = I; !> if ITYPE = 3, Z**T*inv(B)*Z = I\&. !> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') !> or the lower triangle (if UPLO='L') of A, including the !> diagonal, is destroyed\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB, N) !> On entry, the symmetric positive definite matrix B\&. !> If UPLO = 'U', the leading N-by-N upper triangular part of B !> contains the upper triangular part of the matrix B\&. !> If UPLO = 'L', the leading N-by-N lower triangular part of B !> contains the lower triangular part of the matrix B\&. !> !> On exit, if INFO <= N, the part of B containing the matrix is !> overwritten by the triangular factor U or L from the Cholesky !> factorization B = U**T*U or B = L*L**T\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is REAL array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The length of the array WORK\&. LWORK >= max(1,3*N-1)\&. !> For optimal efficiency, LWORK >= (NB+2)*N, !> where NB is the blocksize for SSYTRD returned by ILAENV\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: SPOTRF or SSYEV returned an error code: !> <= N: if INFO = i, SSYEV failed to converge; !> i off-diagonal elements of an intermediate !> tridiagonal form did not converge to zero; !> > N: if INFO = N + i, for 1 <= i <= N, then the leading !> principal minor of order i of B is not positive\&. !> The factorization of B could not be completed and !> no eigenvalues or eigenvectors were computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB173\fP of file \fBssygv\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.