.TH "TESTING/EIG/ssvdct.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/ssvdct.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBssvdct\fP (n, s, e, shift, num)" .br .RI "\fBSSVDCT\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine ssvdct (integer n, real, dimension( * ) s, real, dimension( * ) e, real shift, integer num)" .PP \fBSSVDCT\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SSVDCT counts the number NUM of eigenvalues of a 2*N by 2*N tridiagonal matrix T which are less than or equal to SHIFT\&. T is formed by putting zeros on the diagonal and making the off-diagonals equal to S(1), E(1), S(2), E(2), \&.\&.\&. , E(N-1), S(N)\&. If SHIFT is positive, NUM is equal to N plus the number of singular values of a bidiagonal matrix B less than or equal to SHIFT\&. Here B has diagonal entries S(1), \&.\&.\&., S(N) and superdiagonal entries E(1), \&.\&.\&. E(N-1)\&. If SHIFT is negative, NUM is equal to the number of singular values of B greater than or equal to -SHIFT\&. See W\&. Kahan 'Accurate Eigenvalues of a Symmetric Tridiagonal Matrix', Report CS41, Computer Science Dept\&., Stanford University, July 21, 1966 .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The dimension of the bidiagonal matrix B\&. .fi .PP .br \fIS\fP .PP .nf S is REAL array, dimension (N) The diagonal entries of the bidiagonal matrix B\&. .fi .PP .br \fIE\fP .PP .nf E is REAL array of dimension (N-1) The superdiagonal entries of the bidiagonal matrix B\&. .fi .PP .br \fISHIFT\fP .PP .nf SHIFT is REAL The shift, used as described under Purpose\&. .fi .PP .br \fINUM\fP .PP .nf NUM is INTEGER The number of eigenvalues of T less than or equal to SHIFT\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB86\fP of file \fBssvdct\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.