.TH "TESTING/EIG/sstt22.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/sstt22.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBsstt22\fP (n, m, kband, ad, ae, sd, se, u, ldu, work, ldwork, result)" .br .RI "\fBSSTT22\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine sstt22 (integer n, integer m, integer kband, real, dimension( * ) ad, real, dimension( * ) ae, real, dimension( * ) sd, real, dimension( * ) se, real, dimension( ldu, * ) u, integer ldu, real, dimension( ldwork, * ) work, integer ldwork, real, dimension( 2 ) result)" .PP \fBSSTT22\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SSTT22 checks a set of M eigenvalues and eigenvectors, A U = U S where A is symmetric tridiagonal, the columns of U are orthogonal, and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1)\&. Two tests are performed: RESULT(1) = | U' A U - S | / ( |A| m ulp ) RESULT(2) = | I - U'U | / ( m ulp ) .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The size of the matrix\&. If it is zero, SSTT22 does nothing\&. It must be at least zero\&. .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of eigenpairs to check\&. If it is zero, SSTT22 does nothing\&. It must be at least zero\&. .fi .PP .br \fIKBAND\fP .PP .nf KBAND is INTEGER The bandwidth of the matrix S\&. It may only be zero or one\&. If zero, then S is diagonal, and SE is not referenced\&. If one, then S is symmetric tri-diagonal\&. .fi .PP .br \fIAD\fP .PP .nf AD is REAL array, dimension (N) The diagonal of the original (unfactored) matrix A\&. A is assumed to be symmetric tridiagonal\&. .fi .PP .br \fIAE\fP .PP .nf AE is REAL array, dimension (N) The off-diagonal of the original (unfactored) matrix A\&. A is assumed to be symmetric tridiagonal\&. AE(1) is ignored, AE(2) is the (1,2) and (2,1) element, etc\&. .fi .PP .br \fISD\fP .PP .nf SD is REAL array, dimension (N) The diagonal of the (symmetric tri-) diagonal matrix S\&. .fi .PP .br \fISE\fP .PP .nf SE is REAL array, dimension (N) The off-diagonal of the (symmetric tri-) diagonal matrix S\&. Not referenced if KBSND=0\&. If KBAND=1, then AE(1) is ignored, SE(2) is the (1,2) and (2,1) element, etc\&. .fi .PP .br \fIU\fP .PP .nf U is REAL array, dimension (LDU, N) The orthogonal matrix in the decomposition\&. .fi .PP .br \fILDU\fP .PP .nf LDU is INTEGER The leading dimension of U\&. LDU must be at least N\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (LDWORK, M+1) .fi .PP .br \fILDWORK\fP .PP .nf LDWORK is INTEGER The leading dimension of WORK\&. LDWORK must be at least max(1,M)\&. .fi .PP .br \fIRESULT\fP .PP .nf RESULT is REAL array, dimension (2) The values computed by the two tests described above\&. The values are currently limited to 1/ulp, to avoid overflow\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB137\fP of file \fBsstt22\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.