.TH "SRC/sspgv.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/sspgv.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBsspgv\fP (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)" .br .RI "\fBSSPGV\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine sspgv (integer itype, character jobz, character uplo, integer n, real, dimension( * ) ap, real, dimension( * ) bp, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer info)" .PP \fBSSPGV\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SSPGV computes all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x\&. Here A and B are assumed to be symmetric, stored in packed format, and B is also positive definite\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIITYPE\fP .PP .nf ITYPE is INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x .fi .PP .br \fIJOBZ\fP .PP .nf JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrices A and B\&. N >= 0\&. .fi .PP .br \fIAP\fP .PP .nf AP is REAL array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array\&. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n\&. On exit, the contents of AP are destroyed\&. .fi .PP .br \fIBP\fP .PP .nf BP is REAL array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix B, packed columnwise in a linear array\&. The j-th column of B is stored in the array BP as follows: if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n\&. On exit, the triangular factor U or L from the Cholesky factorization B = U**T*U or B = L*L**T, in the same storage format as B\&. .fi .PP .br \fIW\fP .PP .nf W is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order\&. .fi .PP .br \fIZ\fP .PP .nf Z is REAL array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors\&. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I\&. If JOBZ = 'N', then Z is not referenced\&. .fi .PP .br \fILDZ\fP .PP .nf LDZ is INTEGER The leading dimension of the array Z\&. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (3*N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: SPPTRF or SSPEV returned an error code: <= N: if INFO = i, SSPEV failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero\&. > N: if INFO = n + i, for 1 <= i <= n, then the leading principal minor of order i of B is not positive\&. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB158\fP of file \fBsspgv\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.