TESTING/EIG/ssgt01.f(3) Library Functions Manual TESTING/EIG/ssgt01.f(3)

TESTING/EIG/ssgt01.f


subroutine ssgt01 (itype, uplo, n, m, a, lda, b, ldb, z, ldz, d, work, result)
SSGT01

SSGT01

Purpose:

!>
!> SSGT01 checks a decomposition of the form
!>
!>    A Z   =  B Z D or
!>    A B Z =  Z D or
!>    B A Z =  Z D
!>
!> where A is a symmetric matrix, B is
!> symmetric positive definite, Z is orthogonal, and D is diagonal.
!>
!> One of the following test ratios is computed:
!>
!> ITYPE = 1:  RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp )
!>
!> ITYPE = 2:  RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp )
!>
!> ITYPE = 3:  RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp )
!> 

Parameters

ITYPE
!>          ITYPE is INTEGER
!>          The form of the symmetric generalized eigenproblem.
!>          = 1:  A*z = (lambda)*B*z
!>          = 2:  A*B*z = (lambda)*z
!>          = 3:  B*A*z = (lambda)*z
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          symmetric matrices A and B is stored.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

M

!>          M is INTEGER
!>          The number of eigenvalues found.  0 <= M <= N.
!> 

A

!>          A is REAL array, dimension (LDA, N)
!>          The original symmetric matrix A.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

B

!>          B is REAL array, dimension (LDB, N)
!>          The original symmetric positive definite matrix B.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

Z

!>          Z is REAL array, dimension (LDZ, M)
!>          The computed eigenvectors of the generalized eigenproblem.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= max(1,N).
!> 

D

!>          D is REAL array, dimension (M)
!>          The computed eigenvalues of the generalized eigenproblem.
!> 

WORK

!>          WORK is REAL array, dimension (N*N)
!> 

RESULT

!>          RESULT is REAL array, dimension (1)
!>          The test ratio as described above.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 144 of file ssgt01.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK