.TH "SRC/ssbgvx.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/ssbgvx.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBssbgvx\fP (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)" .br .RI "\fBSSBGVX\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine ssbgvx (character jobz, character range, character uplo, integer n, integer ka, integer kb, real, dimension( ldab, * ) ab, integer ldab, real, dimension( ldbb, * ) bb, integer ldbb, real, dimension( ldq, * ) q, integer ldq, real vl, real vu, integer il, integer iu, real abstol, integer m, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer, dimension( * ) iwork, integer, dimension( * ) ifail, integer info)" .PP \fBSSBGVX\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SSBGVX computes selected eigenvalues, and optionally, eigenvectors !> of a real generalized symmetric-definite banded eigenproblem, of !> the form A*x=(lambda)*B*x\&. Here A and B are assumed to be symmetric !> and banded, and B is also positive definite\&. Eigenvalues and !> eigenvectors can be selected by specifying either all eigenvalues, !> a range of values or a range of indices for the desired eigenvalues\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors\&. !> .fi .PP .br \fIRANGE\fP .PP .nf !> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found\&. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found\&. !> = 'I': the IL-th through IU-th eigenvalues will be found\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangles of A and B are stored; !> = 'L': Lower triangles of A and B are stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrices A and B\&. N >= 0\&. !> .fi .PP .br \fIKA\fP .PP .nf !> KA is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'\&. KA >= 0\&. !> .fi .PP .br \fIKB\fP .PP .nf !> KB is INTEGER !> The number of superdiagonals of the matrix B if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'\&. KB >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is REAL array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the symmetric band !> matrix A, stored in the first ka+1 rows of the array\&. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka)\&. !> !> On exit, the contents of AB are destroyed\&. !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array AB\&. LDAB >= KA+1\&. !> .fi .PP .br \fIBB\fP .PP .nf !> BB is REAL array, dimension (LDBB, N) !> On entry, the upper or lower triangle of the symmetric band !> matrix B, stored in the first kb+1 rows of the array\&. The !> j-th column of B is stored in the j-th column of the array BB !> as follows: !> if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; !> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb)\&. !> !> On exit, the factor S from the split Cholesky factorization !> B = S**T*S, as returned by SPBSTF\&. !> .fi .PP .br \fILDBB\fP .PP .nf !> LDBB is INTEGER !> The leading dimension of the array BB\&. LDBB >= KB+1\&. !> .fi .PP .br \fIQ\fP .PP .nf !> Q is REAL array, dimension (LDQ, N) !> If JOBZ = 'V', the n-by-n matrix used in the reduction of !> A*x = (lambda)*B*x to standard form, i\&.e\&. C*x = (lambda)*x, !> and consequently C to tridiagonal form\&. !> If JOBZ = 'N', the array Q is not referenced\&. !> .fi .PP .br \fILDQ\fP .PP .nf !> LDQ is INTEGER !> The leading dimension of the array Q\&. If JOBZ = 'N', !> LDQ >= 1\&. If JOBZ = 'V', LDQ >= max(1,N)\&. !> .fi .PP .br \fIVL\fP .PP .nf !> VL is REAL !> !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIVU\fP .PP .nf !> VU is REAL !> !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIIL\fP .PP .nf !> IL is INTEGER !> !> If RANGE='I', the index of the !> smallest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIIU\fP .PP .nf !> IU is INTEGER !> !> If RANGE='I', the index of the !> largest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIABSTOL\fP .PP .nf !> ABSTOL is REAL !> The absolute error tolerance for the eigenvalues\&. !> An approximate eigenvalue is accepted as converged !> when it is determined to lie in an interval [a,b] !> of width less than or equal to !> !> ABSTOL + EPS * max( |a|,|b| ) , !> !> where EPS is the machine precision\&. If ABSTOL is less than !> or equal to zero, then EPS*|T| will be used in its place, !> where |T| is the 1-norm of the tridiagonal matrix obtained !> by reducing A to tridiagonal form\&. !> !> Eigenvalues will be computed most accurately when ABSTOL is !> set to twice the underflow threshold 2*SLAMCH('S'), not zero\&. !> If this routine returns with INFO>0, indicating that some !> eigenvectors did not converge, try setting ABSTOL to !> 2*SLAMCH('S')\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The total number of eigenvalues found\&. 0 <= M <= N\&. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is REAL array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is REAL array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of !> eigenvectors, with the i-th column of Z holding the !> eigenvector associated with W(i)\&. The eigenvectors are !> normalized so Z**T*B*Z = I\&. !> If JOBZ = 'N', then Z is not referenced\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (7*N) !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (5*N) !> .fi .PP .br \fIIFAIL\fP .PP .nf !> IFAIL is INTEGER array, dimension (M) !> If JOBZ = 'V', then if INFO = 0, the first M elements of !> IFAIL are zero\&. If INFO > 0, then IFAIL contains the !> indices of the eigenvalues that failed to converge\&. !> If JOBZ = 'N', then IFAIL is not referenced\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> <= N: if INFO = i, then i eigenvectors failed to converge\&. !> Their indices are stored in IFAIL\&. !> > N: SPBSTF returned an error code; i\&.e\&., !> if INFO = N + i, for 1 <= i <= N, then the leading !> principal minor of order i of B is not positive\&. !> The factorization of B could not be completed and !> no eigenvalues or eigenvectors were computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Mark Fahey, Department of Mathematics, Univ\&. of Kentucky, USA .RE .PP .PP Definition at line \fB291\fP of file \fBssbgvx\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.