SRC/ssbevd_2stage.f(3) Library Functions Manual SRC/ssbevd_2stage.f(3) NAME SRC/ssbevd_2stage.f SYNOPSIS Functions/Subroutines subroutine ssbevd_2stage (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info) SSBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices Function/Subroutine Documentation subroutine ssbevd_2stage (character jobz, character uplo, integer n, integer kd, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info) SSBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices Purpose: SSBEVD_2STAGE computes all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A using the 2stage technique for the reduction to tridiagonal. If eigenvectors are desired, it uses a divide and conquer algorithm. Parameters JOBZ JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. Not available in this release. UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. KD KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. AB AB is REAL array, dimension (LDAB, N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). On exit, AB is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB. LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD + 1. W W is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z Z is REAL array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i). If JOBZ = 'N', then Z is not referenced. LDZ LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK WORK is REAL array, dimension LWORK On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of the array WORK. LWORK >= 1, when N <= 1; otherwise If JOBZ = 'N' and N > 1, LWORK must be queried. LWORK = MAX(1, dimension) where dimension = (2KD+1)*N + KD*NTHREADS + N where KD is the size of the band. NTHREADS is the number of threads used when openMP compilation is enabled, otherwise =1. If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. IWORK IWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. LIWORK LIWORK is INTEGER The dimension of the array IWORK. If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: All details about the 2stage techniques are available in: Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages. http://doi.acm.org/10.1145/2063384.2063394 A. Haidar, J. Kurzak, P. Luszczek, 2013. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13). Denver, Colorado, USA, 2013. Article 90, 12 pages. http://doi.acm.org/10.1145/2503210.2503292 A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks. International Journal of High Performance Computing Applications. Volume 28 Issue 2, Pages 196-209, May 2014. http://hpc.sagepub.com/content/28/2/196 Definition at line 226 of file ssbevd_2stage.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/ssbevd_2stage.f(3)