.TH "TESTING/LIN/srqt01.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/LIN/srqt01.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBsrqt01\fP (m, n, a, af, q, r, lda, tau, work, lwork, rwork, result)" .br .RI "\fBSRQT01\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine srqt01 (integer m, integer n, real, dimension( lda, * ) a, real, dimension( lda, * ) af, real, dimension( lda, * ) q, real, dimension( lda, * ) r, integer lda, real, dimension( * ) tau, real, dimension( lwork ) work, integer lwork, real, dimension( * ) rwork, real, dimension( * ) result)" .PP \fBSRQT01\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SRQT01 tests SGERQF, which computes the RQ factorization of an m-by-n matrix A, and partially tests SORGRQ which forms the n-by-n orthogonal matrix Q\&. SRQT01 compares R with A*Q', and checks that Q is orthogonal\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) The m-by-n matrix A\&. .fi .PP .br \fIAF\fP .PP .nf AF is REAL array, dimension (LDA,N) Details of the RQ factorization of A, as returned by SGERQF\&. See SGERQF for further details\&. .fi .PP .br \fIQ\fP .PP .nf Q is REAL array, dimension (LDA,N) The n-by-n orthogonal matrix Q\&. .fi .PP .br \fIR\fP .PP .nf R is REAL array, dimension (LDA,max(M,N)) .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the arrays A, AF, Q and L\&. LDA >= max(M,N)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors, as returned by SGERQF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (LWORK) .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is REAL array, dimension (max(M,N)) .fi .PP .br \fIRESULT\fP .PP .nf RESULT is REAL array, dimension (2) The test ratios: RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS ) RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB124\fP of file \fBsrqt01\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.