TESTING/LIN/sqrt01.f(3) Library Functions Manual TESTING/LIN/sqrt01.f(3)

TESTING/LIN/sqrt01.f


subroutine sqrt01 (m, n, a, af, q, r, lda, tau, work, lwork, rwork, result)
SQRT01

SQRT01

Purpose:

!>
!> SQRT01 tests SGEQRF, which computes the QR factorization of an m-by-n
!> matrix A, and partially tests SORGQR which forms the m-by-m
!> orthogonal matrix Q.
!>
!> SQRT01 compares R with Q'*A, and checks that Q is orthogonal.
!> 

Parameters

M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          The m-by-n matrix A.
!> 

AF

!>          AF is REAL array, dimension (LDA,N)
!>          Details of the QR factorization of A, as returned by SGEQRF.
!>          See SGEQRF for further details.
!> 

Q

!>          Q is REAL array, dimension (LDA,M)
!>          The m-by-m orthogonal matrix Q.
!> 

R

!>          R is REAL array, dimension (LDA,max(M,N))
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the arrays A, AF, Q and R.
!>          LDA >= max(M,N).
!> 

TAU

!>          TAU is REAL array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors, as returned
!>          by SGEQRF.
!> 

WORK

!>          WORK is REAL array, dimension (LWORK)
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!> 

RWORK

!>          RWORK is REAL array, dimension (M)
!> 

RESULT

!>          RESULT is REAL array, dimension (2)
!>          The test ratios:
!>          RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
!>          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 124 of file sqrt01.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK