.TH "SRC/spttrs.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/spttrs.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBspttrs\fP (n, nrhs, d, e, b, ldb, info)" .br .RI "\fBSPTTRS\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine spttrs (integer n, integer nrhs, real, dimension( * ) d, real, dimension( * ) e, real, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fBSPTTRS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SPTTRS solves a tridiagonal system of the form !> A * X = B !> using the L*D*L**T factorization of A computed by SPTTRF\&. D is a !> diagonal matrix specified in the vector D, L is a unit bidiagonal !> matrix whose subdiagonal is specified in the vector E, and X and B !> are N by NRHS matrices\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf !> N is INTEGER !> The order of the tridiagonal matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is REAL array, dimension (N) !> The n diagonal elements of the diagonal matrix D from the !> L*D*L**T factorization of A\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is REAL array, dimension (N-1) !> The (n-1) subdiagonal elements of the unit bidiagonal factor !> L from the L*D*L**T factorization of A\&. E can also be regarded !> as the superdiagonal of the unit bidiagonal factor U from the !> factorization A = U**T*D*U\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,NRHS) !> On entry, the right hand side vectors B for the system of !> linear equations\&. !> On exit, the solution vectors, X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -k, the k-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB108\fP of file \fBspttrs\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.