.TH "SRC/spftri.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/spftri.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBspftri\fP (transr, uplo, n, a, info)" .br .RI "\fBSPFTRI\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine spftri (character transr, character uplo, integer n, real, dimension( 0: * ) a, integer info)" .PP \fBSPFTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SPFTRI computes the inverse of a real (symmetric) positive definite !> matrix A using the Cholesky factorization A = U**T*U or A = L*L**T !> computed by SPFTRF\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANSR\fP .PP .nf !> TRANSR is CHARACTER*1 !> = 'N': The Normal TRANSR of RFP A is stored; !> = 'T': The Transpose TRANSR of RFP A is stored\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension ( N*(N+1)/2 ) !> On entry, the symmetric matrix A in RFP format\&. RFP format is !> described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' !> then RFP A is (0:N,0:k-1) when N is even; k=N/2\&. RFP A is !> (0:N-1,0:k) when N is odd; k=N/2\&. IF TRANSR = 'T' then RFP is !> the transpose of RFP A as defined when !> TRANSR = 'N'\&. The contents of RFP A are defined by UPLO as !> follows: If UPLO = 'U' the RFP A contains the nt elements of !> upper packed A\&. If UPLO = 'L' the RFP A contains the elements !> of lower packed A\&. The LDA of RFP A is (N+1)/2 when TRANSR = !> 'T'\&. When TRANSR is 'N' the LDA is N+1 when N is even and N !> is odd\&. See the Note below for more details\&. !> !> On exit, the symmetric inverse of the original matrix, in the !> same storage format\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the (i,i) element of the factor U or L is !> zero, and the inverse could not be computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> We first consider Rectangular Full Packed (RFP) Format when N is !> even\&. We give an example where N = 6\&. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> !> Let TRANSR = 'N'\&. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper\&. The lower triangle A(4:6,0:2) consists of !> the transpose of the first three columns of AP upper\&. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower\&. The upper triangle A(0:2,0:2) consists of !> the transpose of the last three columns of AP lower\&. !> This covers the case N even and TRANSR = 'N'\&. !> !> RFP A RFP A !> !> 03 04 05 33 43 53 !> 13 14 15 00 44 54 !> 23 24 25 10 11 55 !> 33 34 35 20 21 22 !> 00 44 45 30 31 32 !> 01 11 55 40 41 42 !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'T'\&. RFP A in both UPLO cases is just the !> transpose of RFP A above\&. One therefore gets: !> !> !> RFP A RFP A !> !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> !> We then consider Rectangular Full Packed (RFP) Format when N is !> odd\&. We give an example where N = 5\&. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> !> Let TRANSR = 'N'\&. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper\&. The lower triangle A(3:4,0:1) consists of !> the transpose of the first two columns of AP upper\&. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower\&. The upper triangle A(0:1,1:2) consists of !> the transpose of the last two columns of AP lower\&. !> This covers the case N odd and TRANSR = 'N'\&. !> !> RFP A RFP A !> !> 02 03 04 00 33 43 !> 12 13 14 10 11 44 !> 22 23 24 20 21 22 !> 00 33 34 30 31 32 !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'T'\&. RFP A in both UPLO cases is just the !> transpose of RFP A above\&. One therefore gets: !> !> RFP A RFP A !> !> 02 12 22 00 01 00 10 20 30 40 50 !> 03 13 23 33 11 33 11 21 31 41 51 !> 04 14 24 34 44 43 44 22 32 42 52 !> .fi .PP .RE .PP .PP Definition at line \fB190\fP of file \fBspftri\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.