.TH "SRC/slatbs.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/slatbs.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBslatbs\fP (uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)" .br .RI "\fBSLATBS\fP solves a triangular banded system of equations\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine slatbs (character uplo, character trans, character diag, character normin, integer n, integer kd, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) x, real scale, real, dimension( * ) cnorm, integer info)" .PP \fBSLATBS\fP solves a triangular banded system of equations\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SLATBS solves one of the triangular systems !> !> A *x = s*b or A**T*x = s*b !> !> with scaling to prevent overflow, where A is an upper or lower !> triangular band matrix\&. Here A**T denotes the transpose of A, x and b !> are n-element vectors, and s is a scaling factor, usually less than !> or equal to 1, chosen so that the components of x will be less than !> the overflow threshold\&. If the unscaled problem will not cause !> overflow, the Level 2 BLAS routine STBSV is called\&. If the matrix A !> is singular (A(j,j) = 0 for some j), then s is set to 0 and a !> non-trivial solution to A*x = 0 is returned\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the matrix A is upper or lower triangular\&. !> = 'U': Upper triangular !> = 'L': Lower triangular !> .fi .PP .br \fITRANS\fP .PP .nf !> TRANS is CHARACTER*1 !> Specifies the operation applied to A\&. !> = 'N': Solve A * x = s*b (No transpose) !> = 'T': Solve A**T* x = s*b (Transpose) !> = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose) !> .fi .PP .br \fIDIAG\fP .PP .nf !> DIAG is CHARACTER*1 !> Specifies whether or not the matrix A is unit triangular\&. !> = 'N': Non-unit triangular !> = 'U': Unit triangular !> .fi .PP .br \fINORMIN\fP .PP .nf !> NORMIN is CHARACTER*1 !> Specifies whether CNORM has been set or not\&. !> = 'Y': CNORM contains the column norms on entry !> = 'N': CNORM is not set on entry\&. On exit, the norms will !> be computed and stored in CNORM\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIKD\fP .PP .nf !> KD is INTEGER !> The number of subdiagonals or superdiagonals in the !> triangular matrix A\&. KD >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is REAL array, dimension (LDAB,N) !> The upper or lower triangular band matrix A, stored in the !> first KD+1 rows of the array\&. The j-th column of A is stored !> in the j-th column of the array AB as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd)\&. !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array AB\&. LDAB >= KD+1\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is REAL array, dimension (N) !> On entry, the right hand side b of the triangular system\&. !> On exit, X is overwritten by the solution vector x\&. !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is REAL !> The scaling factor s for the triangular system !> A * x = s*b or A**T* x = s*b\&. !> If SCALE = 0, the matrix A is singular or badly scaled, and !> the vector x is an exact or approximate solution to A*x = 0\&. !> .fi .PP .br \fICNORM\fP .PP .nf !> CNORM is REAL array, dimension (N) !> !> If NORMIN = 'Y', CNORM is an input argument and CNORM(j) !> contains the norm of the off-diagonal part of the j-th column !> of A\&. If TRANS = 'N', CNORM(j) must be greater than or equal !> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) !> must be greater than or equal to the 1-norm\&. !> !> If NORMIN = 'N', CNORM is an output argument and CNORM(j) !> returns the 1-norm of the offdiagonal part of the j-th column !> of A\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -k, the k-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> A rough bound on x is computed; if that is less than overflow, STBSV !> is called, otherwise, specific code is used which checks for possible !> overflow or divide-by-zero at every operation\&. !> !> A columnwise scheme is used for solving A*x = b\&. The basic algorithm !> if A is lower triangular is !> !> x[1:n] := b[1:n] !> for j = 1, \&.\&.\&., n !> x(j) := x(j) / A(j,j) !> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] !> end !> !> Define bounds on the components of x after j iterations of the loop: !> M(j) = bound on x[1:j] !> G(j) = bound on x[j+1:n] !> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,\&.\&.\&.,n}\&. !> !> Then for iteration j+1 we have !> M(j+1) <= G(j) / | A(j+1,j+1) | !> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | !> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) !> !> where CNORM(j+1) is greater than or equal to the infinity-norm of !> column j+1 of A, not counting the diagonal\&. Hence !> !> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) !> 1<=i<=j !> and !> !> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) !> 1<=i< j !> !> Since |x(j)| <= M(j), we use the Level 2 BLAS routine STBSV if the !> reciprocal of the largest M(j), j=1,\&.\&.,n, is larger than !> max(underflow, 1/overflow)\&. !> !> The bound on x(j) is also used to determine when a step in the !> columnwise method can be performed without fear of overflow\&. If !> the computed bound is greater than a large constant, x is scaled to !> prevent overflow, but if the bound overflows, x is set to 0, x(j) to !> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found\&. !> !> Similarly, a row-wise scheme is used to solve A**T*x = b\&. The basic !> algorithm for A upper triangular is !> !> for j = 1, \&.\&.\&., n !> x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j) !> end !> !> We simultaneously compute two bounds !> G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j !> M(j) = bound on x(i), 1<=i<=j !> !> The initial values are G(0) = 0, M(0) = max{b(i), i=1,\&.\&.,n}, and we !> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1\&. !> Then the bound on x(j) is !> !> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | !> !> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) !> 1<=i<=j !> !> and we can safely call STBSV if 1/M(n) and 1/G(n) are both greater !> than max(underflow, 1/overflow)\&. !> .fi .PP .RE .PP .PP Definition at line \fB240\fP of file \fBslatbs\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.