SRC/slasv2.f(3) Library Functions Manual SRC/slasv2.f(3) NAME SRC/slasv2.f SYNOPSIS Functions/Subroutines subroutine slasv2 (f, g, h, ssmin, ssmax, snr, csr, snl, csl) SLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix. Function/Subroutine Documentation subroutine slasv2 (real f, real g, real h, real ssmin, real ssmax, real snr, real csr, real snl, real csl) SLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix. Purpose: !> !> SLASV2 computes the singular value decomposition of a 2-by-2 !> triangular matrix !> [ F G ] !> [ 0 H ]. !> On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the !> smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and !> right singular vectors for abs(SSMAX), giving the decomposition !> !> [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ] !> [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ]. !> Parameters F !> F is REAL !> The (1,1) element of the 2-by-2 matrix. !> G !> G is REAL !> The (1,2) element of the 2-by-2 matrix. !> H !> H is REAL !> The (2,2) element of the 2-by-2 matrix. !> SSMIN !> SSMIN is REAL !> abs(SSMIN) is the smaller singular value. !> SSMAX !> SSMAX is REAL !> abs(SSMAX) is the larger singular value. !> SNL !> SNL is REAL !> CSL !> CSL is REAL !> The vector (CSL, SNL) is a unit left singular vector for the !> singular value abs(SSMAX). !> SNR !> SNR is REAL !> CSR !> CSR is REAL !> The vector (CSR, SNR) is a unit right singular vector for the !> singular value abs(SSMAX). !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: !> !> Any input parameter may be aliased with any output parameter. !> !> Barring over/underflow and assuming a guard digit in subtraction, all !> output quantities are correct to within a few units in the last !> place (ulps). !> !> In IEEE arithmetic, the code works correctly if one matrix element is !> infinite. !> !> Overflow will not occur unless the largest singular value itself !> overflows or is within a few ulps of overflow. !> !> Underflow is harmless if underflow is gradual. Otherwise, results !> may correspond to a matrix modified by perturbations of size near !> the underflow threshold. !> Definition at line 135 of file slasv2.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/slasv2.f(3)