.TH "SRC/slasr.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/slasr.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBslasr\fP (side, pivot, direct, m, n, c, s, a, lda)" .br .RI "\fBSLASR\fP applies a sequence of plane rotations to a general rectangular matrix\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine slasr (character side, character pivot, character direct, integer m, integer n, real, dimension( * ) c, real, dimension( * ) s, real, dimension( lda, * ) a, integer lda)" .PP \fBSLASR\fP applies a sequence of plane rotations to a general rectangular matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SLASR applies a sequence of plane rotations to a real matrix A, !> from either the left or the right\&. !> !> When SIDE = 'L', the transformation takes the form !> !> A := P*A !> !> and when SIDE = 'R', the transformation takes the form !> !> A := A*P**T !> !> where P is an orthogonal matrix consisting of a sequence of z plane !> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', !> and P**T is the transpose of P\&. !> !> When DIRECT = 'F' (Forward sequence), then !> !> P = P(z-1) * \&.\&.\&. * P(2) * P(1) !> !> and when DIRECT = 'B' (Backward sequence), then !> !> P = P(1) * P(2) * \&.\&.\&. * P(z-1) !> !> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation !> !> R(k) = ( c(k) s(k) ) !> = ( -s(k) c(k) )\&. !> !> When PIVOT = 'V' (Variable pivot), the rotation is performed !> for the plane (k,k+1), i\&.e\&., P(k) has the form !> !> P(k) = ( 1 ) !> ( \&.\&.\&. ) !> ( 1 ) !> ( c(k) s(k) ) !> ( -s(k) c(k) ) !> ( 1 ) !> ( \&.\&.\&. ) !> ( 1 ) !> !> where R(k) appears as a rank-2 modification to the identity matrix in !> rows and columns k and k+1\&. !> !> When PIVOT = 'T' (Top pivot), the rotation is performed for the !> plane (1,k+1), so P(k) has the form !> !> P(k) = ( c(k) s(k) ) !> ( 1 ) !> ( \&.\&.\&. ) !> ( 1 ) !> ( -s(k) c(k) ) !> ( 1 ) !> ( \&.\&.\&. ) !> ( 1 ) !> !> where R(k) appears in rows and columns 1 and k+1\&. !> !> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is !> performed for the plane (k,z), giving P(k) the form !> !> P(k) = ( 1 ) !> ( \&.\&.\&. ) !> ( 1 ) !> ( c(k) s(k) ) !> ( 1 ) !> ( \&.\&.\&. ) !> ( 1 ) !> ( -s(k) c(k) ) !> !> where R(k) appears in rows and columns k and z\&. The rotations are !> performed without ever forming P(k) explicitly\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf !> SIDE is CHARACTER*1 !> Specifies whether the plane rotation matrix P is applied to !> A on the left or the right\&. !> = 'L': Left, compute A := P*A !> = 'R': Right, compute A:= A*P**T !> .fi .PP .br \fIPIVOT\fP .PP .nf !> PIVOT is CHARACTER*1 !> Specifies the plane for which P(k) is a plane rotation !> matrix\&. !> = 'V': Variable pivot, the plane (k,k+1) !> = 'T': Top pivot, the plane (1,k+1) !> = 'B': Bottom pivot, the plane (k,z) !> .fi .PP .br \fIDIRECT\fP .PP .nf !> DIRECT is CHARACTER*1 !> Specifies whether P is a forward or backward sequence of !> plane rotations\&. !> = 'F': Forward, P = P(z-1)*\&.\&.\&.*P(2)*P(1) !> = 'B': Backward, P = P(1)*P(2)*\&.\&.\&.*P(z-1) !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. If m <= 1, an immediate !> return is effected\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. If n <= 1, an !> immediate return is effected\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is REAL array, dimension !> (M-1) if SIDE = 'L' !> (N-1) if SIDE = 'R' !> The cosines c(k) of the plane rotations\&. !> .fi .PP .br \fIS\fP .PP .nf !> S is REAL array, dimension !> (M-1) if SIDE = 'L' !> (N-1) if SIDE = 'R' !> The sines s(k) of the plane rotations\&. The 2-by-2 plane !> rotation part of the matrix P(k), R(k), has the form !> R(k) = ( c(k) s(k) ) !> ( -s(k) c(k) )\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension (LDA,N) !> The M-by-N matrix A\&. On exit, A is overwritten by P*A if !> SIDE = 'R' or by A*P**T if SIDE = 'L'\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB198\fP of file \fBslasr\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.