SRC/slarrf.f(3) Library Functions Manual SRC/slarrf.f(3) NAME SRC/slarrf.f SYNOPSIS Functions/Subroutines subroutine slarrf (n, d, l, ld, clstrt, clend, w, wgap, werr, spdiam, clgapl, clgapr, pivmin, sigma, dplus, lplus, work, info) SLARRF finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated. Function/Subroutine Documentation subroutine slarrf (integer n, real, dimension( * ) d, real, dimension( * ) l, real, dimension( * ) ld, integer clstrt, integer clend, real, dimension( * ) w, real, dimension( * ) wgap, real, dimension( * ) werr, real spdiam, real clgapl, real clgapr, real pivmin, real sigma, real, dimension( * ) dplus, real, dimension( * ) lplus, real, dimension( * ) work, integer info) SLARRF finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated. Purpose: !> !> Given the initial representation L D L^T and its cluster of close !> eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ... !> W( CLEND ), SLARRF finds a new relatively robust representation !> L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the !> eigenvalues of L(+) D(+) L(+)^T is relatively isolated. !> Parameters N !> N is INTEGER !> The order of the matrix (subblock, if the matrix split). !> D !> D is REAL array, dimension (N) !> The N diagonal elements of the diagonal matrix D. !> L !> L is REAL array, dimension (N-1) !> The (N-1) subdiagonal elements of the unit bidiagonal !> matrix L. !> LD !> LD is REAL array, dimension (N-1) !> The (N-1) elements L(i)*D(i). !> CLSTRT !> CLSTRT is INTEGER !> The index of the first eigenvalue in the cluster. !> CLEND !> CLEND is INTEGER !> The index of the last eigenvalue in the cluster. !> W !> W is REAL array, dimension !> dimension is >= (CLEND-CLSTRT+1) !> The eigenvalue APPROXIMATIONS of L D L^T in ascending order. !> W( CLSTRT ) through W( CLEND ) form the cluster of relatively !> close eigenalues. !> WGAP !> WGAP is REAL array, dimension !> dimension is >= (CLEND-CLSTRT+1) !> The separation from the right neighbor eigenvalue in W. !> WERR !> WERR is REAL array, dimension !> dimension is >= (CLEND-CLSTRT+1) !> WERR contain the semiwidth of the uncertainty !> interval of the corresponding eigenvalue APPROXIMATION in W !> SPDIAM !> SPDIAM is REAL !> estimate of the spectral diameter obtained from the !> Gerschgorin intervals !> CLGAPL !> CLGAPL is REAL !> CLGAPR !> CLGAPR is REAL !> absolute gap on each end of the cluster. !> Set by the calling routine to protect against shifts too close !> to eigenvalues outside the cluster. !> PIVMIN !> PIVMIN is REAL !> The minimum pivot allowed in the Sturm sequence. !> SIGMA !> SIGMA is REAL !> The shift used to form L(+) D(+) L(+)^T. !> DPLUS !> DPLUS is REAL array, dimension (N) !> The N diagonal elements of the diagonal matrix D(+). !> LPLUS !> LPLUS is REAL array, dimension (N-1) !> The first (N-1) elements of LPLUS contain the subdiagonal !> elements of the unit bidiagonal matrix L(+). !> WORK !> WORK is REAL array, dimension (2*N) !> Workspace. !> INFO !> INFO is INTEGER !> Signals processing OK (=0) or failure (=1) !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: Beresford Parlett, University of California, Berkeley, USA Jim Demmel, University of California, Berkeley, USA Inderjit Dhillon, University of Texas, Austin, USA Osni Marques, LBNL/NERSC, USA Christof Voemel, University of California, Berkeley, USA Definition at line 189 of file slarrf.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/slarrf.f(3)