.TH "SRC/slarfb_gett.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/slarfb_gett.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBslarfb_gett\fP (ident, m, n, k, t, ldt, a, lda, b, ldb, work, ldwork)" .br .RI "\fBSLARFB_GETT\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine slarfb_gett (character ident, integer m, integer n, integer k, real, dimension( ldt, * ) t, integer ldt, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldwork, * ) work, integer ldwork)" .PP \fBSLARFB_GETT\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SLARFB_GETT applies a real Householder block reflector H from the !> left to a real (K+M)-by-N matrix !> composed of two block matrices: an upper trapezoidal K-by-N matrix A !> stored in the array A, and a rectangular M-by-(N-K) matrix B, stored !> in the array B\&. The block reflector H is stored in a compact !> WY-representation, where the elementary reflectors are in the !> arrays A, B and T\&. See Further Details section\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIIDENT\fP .PP .nf !> IDENT is CHARACTER*1 !> If IDENT = not 'I', or not 'i', then V1 is unit !> lower-triangular and stored in the left K-by-K block of !> the input matrix A, !> If IDENT = 'I' or 'i', then V1 is an identity matrix and !> not stored\&. !> See Further Details section\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix B\&. !> M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrices A and B\&. !> N >= 0\&. !> .fi .PP .br \fIK\fP .PP .nf !> K is INTEGER !> The number or rows of the matrix A\&. !> K is also order of the matrix T, i\&.e\&. the number of !> elementary reflectors whose product defines the block !> reflector\&. 0 <= K <= N\&. !> .fi .PP .br \fIT\fP .PP .nf !> T is REAL array, dimension (LDT,K) !> The upper-triangular K-by-K matrix T in the representation !> of the block reflector\&. !> .fi .PP .br \fILDT\fP .PP .nf !> LDT is INTEGER !> The leading dimension of the array T\&. LDT >= K\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension (LDA,N) !> !> On entry: !> a) In the K-by-N upper-trapezoidal part A: input matrix A\&. !> b) In the columns below the diagonal: columns of V1 !> (ones are not stored on the diagonal)\&. !> !> On exit: !> A is overwritten by rectangular K-by-N product H*A\&. !> !> See Further Details section\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,K)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,N) !> !> On entry: !> a) In the M-by-(N-K) right block: input matrix B\&. !> b) In the M-by-N left block: columns of V2\&. !> !> On exit: !> B is overwritten by rectangular M-by-N product H*B\&. !> !> See Further Details section\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,M)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, !> dimension (LDWORK,max(K,N-K)) !> .fi .PP .br \fILDWORK\fP .PP .nf !> LDWORK is INTEGER !> The leading dimension of the array WORK\&. LDWORK>=max(1,K)\&. !> !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 .PP .nf !> !> November 2020, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !> .fi .PP .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> (1) Description of the Algebraic Operation\&. !> !> The matrix A is a K-by-N matrix composed of two column block !> matrices, A1, which is K-by-K, and A2, which is K-by-(N-K): !> A = ( A1, A2 )\&. !> The matrix B is an M-by-N matrix composed of two column block !> matrices, B1, which is M-by-K, and B2, which is M-by-(N-K): !> B = ( B1, B2 )\&. !> !> Perform the operation: !> !> ( A_out ) := H * ( A_in ) = ( I - V * T * V**T ) * ( A_in ) = !> ( B_out ) ( B_in ) ( B_in ) !> = ( I - ( V1 ) * T * ( V1**T, V2**T ) ) * ( A_in ) !> ( V2 ) ( B_in ) !> On input: !> !> a) ( A_in ) consists of two block columns: !> ( B_in ) !> !> ( A_in ) = (( A1_in ) ( A2_in )) = (( A1_in ) ( A2_in )) !> ( B_in ) (( B1_in ) ( B2_in )) (( 0 ) ( B2_in )), !> !> where the column blocks are: !> !> ( A1_in ) is a K-by-K upper-triangular matrix stored in the !> upper triangular part of the array A(1:K,1:K)\&. !> ( B1_in ) is an M-by-K rectangular ZERO matrix and not stored\&. !> !> ( A2_in ) is a K-by-(N-K) rectangular matrix stored !> in the array A(1:K,K+1:N)\&. !> ( B2_in ) is an M-by-(N-K) rectangular matrix stored !> in the array B(1:M,K+1:N)\&. !> !> b) V = ( V1 ) !> ( V2 ) !> !> where: !> 1) if IDENT == 'I',V1 is a K-by-K identity matrix, not stored; !> 2) if IDENT != 'I',V1 is a K-by-K unit lower-triangular matrix, !> stored in the lower-triangular part of the array !> A(1:K,1:K) (ones are not stored), !> and V2 is an M-by-K rectangular stored the array B(1:M,1:K), !> (because on input B1_in is a rectangular zero !> matrix that is not stored and the space is !> used to store V2)\&. !> !> c) T is a K-by-K upper-triangular matrix stored !> in the array T(1:K,1:K)\&. !> !> On output: !> !> a) ( A_out ) consists of two block columns: !> ( B_out ) !> !> ( A_out ) = (( A1_out ) ( A2_out )) !> ( B_out ) (( B1_out ) ( B2_out )), !> !> where the column blocks are: !> !> ( A1_out ) is a K-by-K square matrix, or a K-by-K !> upper-triangular matrix, if V1 is an !> identity matrix\&. AiOut is stored in !> the array A(1:K,1:K)\&. !> ( B1_out ) is an M-by-K rectangular matrix stored !> in the array B(1:M,K:N)\&. !> !> ( A2_out ) is a K-by-(N-K) rectangular matrix stored !> in the array A(1:K,K+1:N)\&. !> ( B2_out ) is an M-by-(N-K) rectangular matrix stored !> in the array B(1:M,K+1:N)\&. !> !> !> The operation above can be represented as the same operation !> on each block column: !> !> ( A1_out ) := H * ( A1_in ) = ( I - V * T * V**T ) * ( A1_in ) !> ( B1_out ) ( 0 ) ( 0 ) !> !> ( A2_out ) := H * ( A2_in ) = ( I - V * T * V**T ) * ( A2_in ) !> ( B2_out ) ( B2_in ) ( B2_in ) !> !> If IDENT != 'I': !> !> The computation for column block 1: !> !> A1_out: = A1_in - V1*T*(V1**T)*A1_in !> !> B1_out: = - V2*T*(V1**T)*A1_in !> !> The computation for column block 2, which exists if N > K: !> !> A2_out: = A2_in - V1*T*( (V1**T)*A2_in + (V2**T)*B2_in ) !> !> B2_out: = B2_in - V2*T*( (V1**T)*A2_in + (V2**T)*B2_in ) !> !> If IDENT == 'I': !> !> The operation for column block 1: !> !> A1_out: = A1_in - V1*T**A1_in !> !> B1_out: = - V2*T**A1_in !> !> The computation for column block 2, which exists if N > K: !> !> A2_out: = A2_in - T*( A2_in + (V2**T)*B2_in ) !> !> B2_out: = B2_in - V2*T*( A2_in + (V2**T)*B2_in ) !> !> (2) Description of the Algorithmic Computation\&. !> !> In the first step, we compute column block 2, i\&.e\&. A2 and B2\&. !> Here, we need to use the K-by-(N-K) rectangular workspace !> matrix W2 that is of the same size as the matrix A2\&. !> W2 is stored in the array WORK(1:K,1:(N-K))\&. !> !> In the second step, we compute column block 1, i\&.e\&. A1 and B1\&. !> Here, we need to use the K-by-K square workspace matrix W1 !> that is of the same size as the as the matrix A1\&. !> W1 is stored in the array WORK(1:K,1:K)\&. !> !> NOTE: Hence, in this routine, we need the workspace array WORK !> only of size WORK(1:K,1:max(K,N-K)) so it can hold both W2 from !> the first step and W1 from the second step\&. !> !> Case (A), when V1 is unit lower-triangular, i\&.e\&. IDENT != 'I', !> more computations than in the Case (B)\&. !> !> if( IDENT != 'I' ) then !> if ( N > K ) then !> (First Step - column block 2) !> col2_(1) W2: = A2 !> col2_(2) W2: = (V1**T) * W2 = (unit_lower_tr_of_(A1)**T) * W2 !> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2 !> col2_(4) W2: = T * W2 !> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 !> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2 !> col2_(7) A2: = A2 - W2 !> else !> (Second Step - column block 1) !> col1_(1) W1: = A1 !> col1_(2) W1: = (V1**T) * W1 = (unit_lower_tr_of_(A1)**T) * W1 !> col1_(3) W1: = T * W1 !> col1_(4) B1: = - V2 * W1 = - B1 * W1 !> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1 !> col1_(6) square A1: = A1 - W1 !> end if !> end if !> !> Case (B), when V1 is an identity matrix, i\&.e\&. IDENT == 'I', !> less computations than in the Case (A) !> !> if( IDENT == 'I' ) then !> if ( N > K ) then !> (First Step - column block 2) !> col2_(1) W2: = A2 !> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2 !> col2_(4) W2: = T * W2 !> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 !> col2_(7) A2: = A2 - W2 !> else !> (Second Step - column block 1) !> col1_(1) W1: = A1 !> col1_(3) W1: = T * W1 !> col1_(4) B1: = - V2 * W1 = - B1 * W1 !> col1_(6) upper-triangular_of_(A1): = A1 - W1 !> end if !> end if !> !> Combine these cases (A) and (B) together, this is the resulting !> algorithm: !> !> if ( N > K ) then !> !> (First Step - column block 2) !> !> col2_(1) W2: = A2 !> if( IDENT != 'I' ) then !> col2_(2) W2: = (V1**T) * W2 !> = (unit_lower_tr_of_(A1)**T) * W2 !> end if !> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2] !> col2_(4) W2: = T * W2 !> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 !> if( IDENT != 'I' ) then !> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2 !> end if !> col2_(7) A2: = A2 - W2 !> !> else !> !> (Second Step - column block 1) !> !> col1_(1) W1: = A1 !> if( IDENT != 'I' ) then !> col1_(2) W1: = (V1**T) * W1 !> = (unit_lower_tr_of_(A1)**T) * W1 !> end if !> col1_(3) W1: = T * W1 !> col1_(4) B1: = - V2 * W1 = - B1 * W1 !> if( IDENT != 'I' ) then !> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1 !> col1_(6_a) below_diag_of_(A1): = - below_diag_of_(W1) !> end if !> col1_(6_b) up_tr_of_(A1): = up_tr_of_(A1) - up_tr_of_(W1) !> !> end if !> !> .fi .PP .RE .PP .PP Definition at line \fB390\fP of file \fBslarfb_gett\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.