SRC/slags2.f(3) Library Functions Manual SRC/slags2.f(3)

SRC/slags2.f


subroutine slags2 (upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
SLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel.

SLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel.

Purpose:

!>
!> SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such
!> that if ( UPPER ) then
!>
!>           U**T *A*Q = U**T *( A1 A2 )*Q = ( x  0  )
!>                             ( 0  A3 )     ( x  x  )
!> and
!>           V**T*B*Q = V**T *( B1 B2 )*Q = ( x  0  )
!>                            ( 0  B3 )     ( x  x  )
!>
!> or if ( .NOT.UPPER ) then
!>
!>           U**T *A*Q = U**T *( A1 0  )*Q = ( x  x  )
!>                             ( A2 A3 )     ( 0  x  )
!> and
!>           V**T*B*Q = V**T*( B1 0  )*Q = ( x  x  )
!>                           ( B2 B3 )     ( 0  x  )
!>
!> The rows of the transformed A and B are parallel, where
!>
!>   U = (  CSU  SNU ), V = (  CSV SNV ), Q = (  CSQ   SNQ )
!>       ( -SNU  CSU )      ( -SNV CSV )      ( -SNQ   CSQ )
!>
!> Z**T denotes the transpose of Z.
!>
!> 

Parameters

UPPER
!>          UPPER is LOGICAL
!>          = .TRUE.: the input matrices A and B are upper triangular.
!>          = .FALSE.: the input matrices A and B are lower triangular.
!> 

A1

!>          A1 is REAL
!> 

A2

!>          A2 is REAL
!> 

A3

!>          A3 is REAL
!>          On entry, A1, A2 and A3 are elements of the input 2-by-2
!>          upper (lower) triangular matrix A.
!> 

B1

!>          B1 is REAL
!> 

B2

!>          B2 is REAL
!> 

B3

!>          B3 is REAL
!>          On entry, B1, B2 and B3 are elements of the input 2-by-2
!>          upper (lower) triangular matrix B.
!> 

CSU

!>          CSU is REAL
!> 

SNU

!>          SNU is REAL
!>          The desired orthogonal matrix U.
!> 

CSV

!>          CSV is REAL
!> 

SNV

!>          SNV is REAL
!>          The desired orthogonal matrix V.
!> 

CSQ

!>          CSQ is REAL
!> 

SNQ

!>          SNQ is REAL
!>          The desired orthogonal matrix Q.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 150 of file slags2.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK