.TH "SRC/slaed1.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/slaed1.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBslaed1\fP (n, d, q, ldq, indxq, rho, cutpnt, work, iwork, info)" .br .RI "\fBSLAED1\fP used by SSTEDC\&. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix\&. Used when the original matrix is tridiagonal\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine slaed1 (integer n, real, dimension( * ) d, real, dimension( ldq, * ) q, integer ldq, integer, dimension( * ) indxq, real rho, integer cutpnt, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)" .PP \fBSLAED1\fP used by SSTEDC\&. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix\&. Used when the original matrix is tridiagonal\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SLAED1 computes the updated eigensystem of a diagonal !> matrix after modification by a rank-one symmetric matrix\&. This !> routine is used only for the eigenproblem which requires all !> eigenvalues and eigenvectors of a tridiagonal matrix\&. SLAED7 handles !> the case in which eigenvalues only or eigenvalues and eigenvectors !> of a full symmetric matrix (which was reduced to tridiagonal form) !> are desired\&. !> !> T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out) !> !> where Z = Q**T*u, u is a vector of length N with ones in the !> CUTPNT and CUTPNT + 1 th elements and zeros elsewhere\&. !> !> The eigenvectors of the original matrix are stored in Q, and the !> eigenvalues are in D\&. The algorithm consists of three stages: !> !> The first stage consists of deflating the size of the problem !> when there are multiple eigenvalues or if there is a zero in !> the Z vector\&. For each such occurrence the dimension of the !> secular equation problem is reduced by one\&. This stage is !> performed by the routine SLAED2\&. !> !> The second stage consists of calculating the updated !> eigenvalues\&. This is done by finding the roots of the secular !> equation via the routine SLAED4 (as called by SLAED3)\&. !> This routine also calculates the eigenvectors of the current !> problem\&. !> !> The final stage consists of computing the updated eigenvectors !> directly using the updated eigenvalues\&. The eigenvectors for !> the current problem are multiplied with the eigenvectors from !> the overall problem\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf !> N is INTEGER !> The dimension of the symmetric tridiagonal matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is REAL array, dimension (N) !> On entry, the eigenvalues of the rank-1-perturbed matrix\&. !> On exit, the eigenvalues of the repaired matrix\&. !> .fi .PP .br \fIQ\fP .PP .nf !> Q is REAL array, dimension (LDQ,N) !> On entry, the eigenvectors of the rank-1-perturbed matrix\&. !> On exit, the eigenvectors of the repaired tridiagonal matrix\&. !> .fi .PP .br \fILDQ\fP .PP .nf !> LDQ is INTEGER !> The leading dimension of the array Q\&. LDQ >= max(1,N)\&. !> .fi .PP .br \fIINDXQ\fP .PP .nf !> INDXQ is INTEGER array, dimension (N) !> On entry, the permutation which separately sorts the two !> subproblems in D into ascending order\&. !> On exit, the permutation which will reintegrate the !> subproblems back into sorted order, !> i\&.e\&. D( INDXQ( I = 1, N ) ) will be in ascending order\&. !> .fi .PP .br \fIRHO\fP .PP .nf !> RHO is REAL !> The subdiagonal entry used to create the rank-1 modification\&. !> .fi .PP .br \fICUTPNT\fP .PP .nf !> CUTPNT is INTEGER !> The location of the last eigenvalue in the leading sub-matrix\&. !> min(1,N) <= CUTPNT <= N/2\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (4*N + N**2) !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (4*N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> > 0: if INFO = 1, an eigenvalue did not converge !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Jeff Rutter, Computer Science Division, University of California at Berkeley, USA .br Modified by Francoise Tisseur, University of Tennessee .RE .PP .PP Definition at line \fB161\fP of file \fBslaed1\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.