SRC/sla_gercond.f(3) Library Functions Manual SRC/sla_gercond.f(3) NAME SRC/sla_gercond.f SYNOPSIS Functions/Subroutines real function sla_gercond (trans, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork) SLA_GERCOND estimates the Skeel condition number for a general matrix. Function/Subroutine Documentation real function sla_gercond (character trans, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, integer cmode, real, dimension( * ) c, integer info, real, dimension( * ) work, integer, dimension( * ) iwork) SLA_GERCOND estimates the Skeel condition number for a general matrix. Purpose: !> !> SLA_GERCOND estimates the Skeel condition number of op(A) * op2(C) !> where op2 is determined by CMODE as follows !> CMODE = 1 op2(C) = C !> CMODE = 0 op2(C) = I !> CMODE = -1 op2(C) = inv(C) !> The Skeel condition number cond(A) = norminf( |inv(A)||A| ) !> is computed by computing scaling factors R such that !> diag(R)*A*op2(C) is row equilibrated and computing the standard !> infinity-norm condition number. !> Parameters TRANS !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate Transpose = Transpose) !> N !> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !> A !> A is REAL array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> AF !> AF is REAL array, dimension (LDAF,N) !> The factors L and U from the factorization !> A = P*L*U as computed by SGETRF. !> LDAF !> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !> IPIV !> IPIV is INTEGER array, dimension (N) !> The pivot indices from the factorization A = P*L*U !> as computed by SGETRF; row i of the matrix was interchanged !> with row IPIV(i). !> CMODE !> CMODE is INTEGER !> Determines op2(C) in the formula op(A) * op2(C) as follows: !> CMODE = 1 op2(C) = C !> CMODE = 0 op2(C) = I !> CMODE = -1 op2(C) = inv(C) !> C !> C is REAL array, dimension (N) !> The vector C in the formula op(A) * op2(C). !> INFO !> INFO is INTEGER !> = 0: Successful exit. !> i > 0: The ith argument is invalid. !> WORK !> WORK is REAL array, dimension (3*N). !> Workspace. !> IWORK !> IWORK is INTEGER array, dimension (N). !> Workspace.2 !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 148 of file sla_gercond.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/sla_gercond.f(3)