.TH "SRC/sgeqrf.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/sgeqrf.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBsgeqrf\fP (m, n, a, lda, tau, work, lwork, info)" .br .RI "\fBSGEQRF\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine sgeqrf (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)" .PP \fBSGEQRF\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SGEQRF computes a QR factorization of a real M-by-N matrix A: !> !> A = Q * ( R ), !> ( 0 ) !> !> where: !> !> Q is a M-by-M orthogonal matrix; !> R is an upper-triangular N-by-N matrix; !> 0 is a (M-N)-by-N zero matrix, if M > N\&. !> !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension (LDA,N) !> On entry, the M-by-N matrix A\&. !> On exit, the elements on and above the diagonal of the array !> contain the min(M,N)-by-N upper trapezoidal matrix R (R is !> upper triangular if m >= n); the elements below the diagonal, !> with the array TAU, represent the orthogonal matrix Q as a !> product of min(m,n) elementary reflectors (see Further !> Details)\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is REAL array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. !> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise\&. !> For optimum performance LWORK >= N*NB, where NB is !> the optimal blocksize\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&. !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), !> and tau in TAU(i)\&. !> .fi .PP .RE .PP .PP Definition at line \fB145\fP of file \fBsgeqrf\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.