.TH "SRC/sgeqp3.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/sgeqp3.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBsgeqp3\fP (m, n, a, lda, jpvt, tau, work, lwork, info)" .br .RI "\fBSGEQP3\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine sgeqp3 (integer m, integer n, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)" .PP \fBSGEQP3\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SGEQP3 computes a QR factorization with column pivoting of a !> matrix A: A*P = Q*R using Level 3 BLAS\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension (LDA,N) !> On entry, the M-by-N matrix A\&. !> On exit, the upper triangle of the array contains the !> min(M,N)-by-N upper trapezoidal matrix R; the elements below !> the diagonal, together with the array TAU, represent the !> orthogonal matrix Q as a product of min(M,N) elementary !> reflectors\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIJPVT\fP .PP .nf !> JPVT is INTEGER array, dimension (N) !> On entry, if JPVT(J)\&.ne\&.0, the J-th column of A is permuted !> to the front of A*P (a leading column); if JPVT(J)=0, !> the J-th column of A is a free column\&. !> On exit, if JPVT(J)=K, then the J-th column of A*P was the !> the K-th column of A\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is REAL array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO=0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= 3*N+1\&. !> For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB !> is the optimal blocksize\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&. !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real/complex vector !> with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in !> A(i+1:m,i), and tau in TAU(i)\&. !> .fi .PP .RE .PP \fBContributors:\fP .RS 4 G\&. Quintana-Orti, Depto\&. de Informatica, Universidad Jaime I, Spain X\&. Sun, Computer Science Dept\&., Duke University, USA .RE .PP .PP Definition at line \fB150\fP of file \fBsgeqp3\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.