SRC/sgelqf.f(3) Library Functions Manual SRC/sgelqf.f(3) NAME SRC/sgelqf.f SYNOPSIS Functions/Subroutines subroutine sgelqf (m, n, a, lda, tau, work, lwork, info) SGELQF Function/Subroutine Documentation subroutine sgelqf (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info) SGELQF Purpose: !> !> SGELQF computes an LQ factorization of a real M-by-N matrix A: !> !> A = ( L 0 ) * Q !> !> where: !> !> Q is a N-by-N orthogonal matrix; !> L is a lower-triangular M-by-M matrix; !> 0 is a M-by-(N-M) zero matrix, if M < N. !> !> Parameters M !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> N !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> A !> A is REAL array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the elements on and below the diagonal of the array !> contain the m-by-min(m,n) lower trapezoidal matrix L (L is !> lower triangular if m <= n); the elements above the diagonal, !> with the array TAU, represent the orthogonal matrix Q as a !> product of elementary reflectors (see Further Details). !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> TAU !> TAU is REAL array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !> WORK !> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> LWORK !> LWORK is INTEGER !> The dimension of the array WORK. !> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise. !> For optimum performance LWORK >= M*NB, where NB is the !> optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> INFO !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: !> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(k) . . . H(2) H(1), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), !> and tau in TAU(i). !> Definition at line 143 of file sgelqf.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/sgelqf.f(3)