.TH "SRC/sgbtf2.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/sgbtf2.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBsgbtf2\fP (m, n, kl, ku, ab, ldab, ipiv, info)" .br .RI "\fBSGBTF2\fP computes the LU factorization of a general band matrix using the unblocked version of the algorithm\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine sgbtf2 (integer m, integer n, integer kl, integer ku, real, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, integer info)" .PP \fBSGBTF2\fP computes the LU factorization of a general band matrix using the unblocked version of the algorithm\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SGBTF2 computes an LU factorization of a real m-by-n band matrix A !> using partial pivoting with row interchanges\&. !> !> This is the unblocked version of the algorithm, calling Level 2 BLAS\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIKL\fP .PP .nf !> KL is INTEGER !> The number of subdiagonals within the band of A\&. KL >= 0\&. !> .fi .PP .br \fIKU\fP .PP .nf !> KU is INTEGER !> The number of superdiagonals within the band of A\&. KU >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is REAL array, dimension (LDAB,N) !> On entry, the matrix A in band storage, in rows KL+1 to !> 2*KL+KU+1; rows 1 to KL of the array need not be set\&. !> The j-th column of A is stored in the j-th column of the !> array AB as follows: !> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) !> !> On exit, details of the factorization: U is stored as an !> upper triangular band matrix with KL+KU superdiagonals in !> rows 1 to KL+KU+1, and the multipliers used during the !> factorization are stored in rows KL+KU+2 to 2*KL+KU+1\&. !> See below for further details\&. !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array AB\&. LDAB >= 2*KL+KU+1\&. !> .fi .PP .br \fIIPIV\fP .PP .nf !> IPIV is INTEGER array, dimension (min(M,N)) !> The pivot indices; for 1 <= i <= min(M,N), row i of the !> matrix was interchanged with row IPIV(i)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = +i, U(i,i) is exactly zero\&. The factorization !> has been completed, but the factor U is exactly !> singular, and division by zero will occur if it is used !> to solve a system of equations\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The band storage scheme is illustrated by the following example, when !> M = N = 6, KL = 2, KU = 1: !> !> On entry: On exit: !> !> * * * + + + * * * u14 u25 u36 !> * * + + + + * * u13 u24 u35 u46 !> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 !> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 !> a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * !> a31 a42 a53 a64 * * m31 m42 m53 m64 * * !> !> Array elements marked * are not used by the routine; elements marked !> + need not be set on entry, but are required by the routine to store !> elements of U, because of fill-in resulting from the row !> interchanges\&. !> .fi .PP .RE .PP .PP Definition at line \fB144\fP of file \fBsgbtf2\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.