rotg(3) Library Functions Manual rotg(3) NAME rotg - rotg: generate plane rotation (cf. lartg) SYNOPSIS Functions subroutine crotg (a, b, c, s) CROTG generates a Givens rotation with real cosine and complex sine. subroutine drotg (a, b, c, s) DROTG subroutine srotg (a, b, c, s) SROTG subroutine zrotg (a, b, c, s) ZROTG generates a Givens rotation with real cosine and complex sine. Detailed Description Function Documentation subroutine crotg (complex(wp) a, complex(wp) b, real(wp) c, complex(wp) s) CROTG generates a Givens rotation with real cosine and complex sine. Purpose: !> !> CROTG constructs a plane rotation !> [ c s ] [ a ] = [ r ] !> [ -conjg(s) c ] [ b ] [ 0 ] !> where c is real, s is complex, and c**2 + conjg(s)*s = 1. !> !> The computation uses the formulas !> |x| = sqrt( Re(x)**2 + Im(x)**2 ) !> sgn(x) = x / |x| if x /= 0 !> = 1 if x = 0 !> c = |a| / sqrt(|a|**2 + |b|**2) !> s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2) !> r = sgn(a)*sqrt(|a|**2 + |b|**2) !> When a and b are real and r /= 0, the formulas simplify to !> c = a / r !> s = b / r !> the same as in SROTG when |a| > |b|. When |b| >= |a|, the !> sign of c and s will be different from those computed by SROTG !> if the signs of a and b are not the same. !> !> See also lartg: generate plane rotation, more accurate than BLAS rot, lartgp: generate plane rotation, more accurate than BLAS rot Parameters A !> A is COMPLEX !> On entry, the scalar a. !> On exit, the scalar r. !> B !> B is COMPLEX !> The scalar b. !> C !> C is REAL !> The scalar c. !> S !> S is COMPLEX !> The scalar s. !> Author Weslley Pereira, University of Colorado Denver, USA Date December 2021 Further Details: !> !> Based on the algorithm from !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> Definition at line 88 of file crotg.f90. subroutine drotg (real(wp) a, real(wp) b, real(wp) c, real(wp) s) DROTG Purpose: !> !> DROTG constructs a plane rotation !> [ c s ] [ a ] = [ r ] !> [ -s c ] [ b ] [ 0 ] !> satisfying c**2 + s**2 = 1. !> !> The computation uses the formulas !> sigma = sgn(a) if |a| > |b| !> = sgn(b) if |b| >= |a| !> r = sigma*sqrt( a**2 + b**2 ) !> c = 1; s = 0 if r = 0 !> c = a/r; s = b/r if r != 0 !> The subroutine also computes !> z = s if |a| > |b|, !> = 1/c if |b| >= |a| and c != 0 !> = 1 if c = 0 !> This allows c and s to be reconstructed from z as follows: !> If z = 1, set c = 0, s = 1. !> If |z| < 1, set c = sqrt(1 - z**2) and s = z. !> If |z| > 1, set c = 1/z and s = sqrt( 1 - c**2). !> !> See also lartg: generate plane rotation, more accurate than BLAS rot, lartgp: generate plane rotation, more accurate than BLAS rot Parameters A !> A is DOUBLE PRECISION !> On entry, the scalar a. !> On exit, the scalar r. !> B !> B is DOUBLE PRECISION !> On entry, the scalar b. !> On exit, the scalar z. !> C !> C is DOUBLE PRECISION !> The scalar c. !> S !> S is DOUBLE PRECISION !> The scalar s. !> Author Edward Anderson, Lockheed Martin Contributors: Weslley Pereira, University of Colorado Denver, USA Further Details: !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> Definition at line 91 of file drotg.f90. subroutine srotg (real(wp) a, real(wp) b, real(wp) c, real(wp) s) SROTG Purpose: !> !> SROTG constructs a plane rotation !> [ c s ] [ a ] = [ r ] !> [ -s c ] [ b ] [ 0 ] !> satisfying c**2 + s**2 = 1. !> !> The computation uses the formulas !> sigma = sgn(a) if |a| > |b| !> = sgn(b) if |b| >= |a| !> r = sigma*sqrt( a**2 + b**2 ) !> c = 1; s = 0 if r = 0 !> c = a/r; s = b/r if r != 0 !> The subroutine also computes !> z = s if |a| > |b|, !> = 1/c if |b| >= |a| and c != 0 !> = 1 if c = 0 !> This allows c and s to be reconstructed from z as follows: !> If z = 1, set c = 0, s = 1. !> If |z| < 1, set c = sqrt(1 - z**2) and s = z. !> If |z| > 1, set c = 1/z and s = sqrt( 1 - c**2). !> !> See also lartg: generate plane rotation, more accurate than BLAS rot, lartgp: generate plane rotation, more accurate than BLAS rot Parameters A !> A is REAL !> On entry, the scalar a. !> On exit, the scalar r. !> B !> B is REAL !> On entry, the scalar b. !> On exit, the scalar z. !> C !> C is REAL !> The scalar c. !> S !> S is REAL !> The scalar s. !> Author Edward Anderson, Lockheed Martin Contributors: Weslley Pereira, University of Colorado Denver, USA Further Details: !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> Definition at line 91 of file srotg.f90. subroutine zrotg (complex(wp) a, complex(wp) b, real(wp) c, complex(wp) s) ZROTG generates a Givens rotation with real cosine and complex sine. Purpose: !> !> ZROTG constructs a plane rotation !> [ c s ] [ a ] = [ r ] !> [ -conjg(s) c ] [ b ] [ 0 ] !> where c is real, s is complex, and c**2 + conjg(s)*s = 1. !> !> The computation uses the formulas !> |x| = sqrt( Re(x)**2 + Im(x)**2 ) !> sgn(x) = x / |x| if x /= 0 !> = 1 if x = 0 !> c = |a| / sqrt(|a|**2 + |b|**2) !> s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2) !> r = sgn(a)*sqrt(|a|**2 + |b|**2) !> When a and b are real and r /= 0, the formulas simplify to !> c = a / r !> s = b / r !> the same as in DROTG when |a| > |b|. When |b| >= |a|, the !> sign of c and s will be different from those computed by DROTG !> if the signs of a and b are not the same. !> !> See also lartg: generate plane rotation, more accurate than BLAS rot, lartgp: generate plane rotation, more accurate than BLAS rot Parameters A !> A is DOUBLE COMPLEX !> On entry, the scalar a. !> On exit, the scalar r. !> B !> B is DOUBLE COMPLEX !> The scalar b. !> C !> C is DOUBLE PRECISION !> The scalar c. !> S !> S is DOUBLE COMPLEX !> The scalar s. !> Author Weslley Pereira, University of Colorado Denver, USA Date December 2021 Further Details: !> !> Based on the algorithm from !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> Definition at line 88 of file zrotg.f90. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 rotg(3)