pptrs(3) Library Functions Manual pptrs(3)

pptrs - pptrs: triangular solve using factor


subroutine cpptrs (uplo, n, nrhs, ap, b, ldb, info)
CPPTRS subroutine dpptrs (uplo, n, nrhs, ap, b, ldb, info)
DPPTRS subroutine spptrs (uplo, n, nrhs, ap, b, ldb, info)
SPPTRS subroutine zpptrs (uplo, n, nrhs, ap, b, ldb, info)
ZPPTRS

CPPTRS

Purpose:

!>
!> CPPTRS solves a system of linear equations A*X = B with a Hermitian
!> positive definite matrix A in packed storage using the Cholesky
!> factorization A = U**H*U or A = L*L**H computed by CPPTRF.
!> 

Parameters

UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

AP

!>          AP is COMPLEX array, dimension (N*(N+1)/2)
!>          The triangular factor U or L from the Cholesky factorization
!>          A = U**H*U or A = L*L**H, packed columnwise in a linear
!>          array.  The j-th column of U or L is stored in the array AP
!>          as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
!> 

B

!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file cpptrs.f.

DPPTRS

Purpose:

!>
!> DPPTRS solves a system of linear equations A*X = B with a symmetric
!> positive definite matrix A in packed storage using the Cholesky
!> factorization A = U**T*U or A = L*L**T computed by DPPTRF.
!> 

Parameters

UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

AP

!>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
!>          The triangular factor U or L from the Cholesky factorization
!>          A = U**T*U or A = L*L**T, packed columnwise in a linear
!>          array.  The j-th column of U or L is stored in the array AP
!>          as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
!> 

B

!>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file dpptrs.f.

SPPTRS

Purpose:

!>
!> SPPTRS solves a system of linear equations A*X = B with a symmetric
!> positive definite matrix A in packed storage using the Cholesky
!> factorization A = U**T*U or A = L*L**T computed by SPPTRF.
!> 

Parameters

UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

AP

!>          AP is REAL array, dimension (N*(N+1)/2)
!>          The triangular factor U or L from the Cholesky factorization
!>          A = U**T*U or A = L*L**T, packed columnwise in a linear
!>          array.  The j-th column of U or L is stored in the array AP
!>          as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
!> 

B

!>          B is REAL array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file spptrs.f.

ZPPTRS

Purpose:

!>
!> ZPPTRS solves a system of linear equations A*X = B with a Hermitian
!> positive definite matrix A in packed storage using the Cholesky
!> factorization A = U**H * U or A = L * L**H computed by ZPPTRF.
!> 

Parameters

UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

AP

!>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
!>          The triangular factor U or L from the Cholesky factorization
!>          A = U**H * U or A = L * L**H, packed columnwise in a linear
!>          array.  The j-th column of U or L is stored in the array AP
!>          as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
!> 

B

!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file zpptrs.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK