.TH "pptrf" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME pptrf \- pptrf: triangular factor .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcpptrf\fP (uplo, n, ap, info)" .br .RI "\fBCPPTRF\fP " .ti -1c .RI "subroutine \fBdpptrf\fP (uplo, n, ap, info)" .br .RI "\fBDPPTRF\fP " .ti -1c .RI "subroutine \fBspptrf\fP (uplo, n, ap, info)" .br .RI "\fBSPPTRF\fP " .ti -1c .RI "subroutine \fBzpptrf\fP (uplo, n, ap, info)" .br .RI "\fBZPPTRF\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cpptrf (character uplo, integer n, complex, dimension( * ) ap, integer info)" .PP \fBCPPTRF\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CPPTRF computes the Cholesky factorization of a complex Hermitian !> positive definite matrix A stored in packed format\&. !> !> The factorization has the form !> A = U**H * U, if UPLO = 'U', or !> A = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is lower triangular\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array\&. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> See below for further details\&. !> !> On exit, if INFO = 0, the triangular factor U or L from the !> Cholesky factorization A = U**H*U or A = L*L**H, in the same !> storage format as A\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> is not positive definite, and the factorization could !> not be completed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The packed storage scheme is illustrated by the following example !> when N = 4, UPLO = 'U': !> !> Two-dimensional storage of the Hermitian matrix A: !> !> a11 a12 a13 a14 !> a22 a23 a24 !> a33 a34 (aij = conjg(aji)) !> a44 !> !> Packed storage of the upper triangle of A: !> !> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] !> .fi .PP .RE .PP .PP Definition at line \fB118\fP of file \fBcpptrf\&.f\fP\&. .SS "subroutine dpptrf (character uplo, integer n, double precision, dimension( * ) ap, integer info)" .PP \fBDPPTRF\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DPPTRF computes the Cholesky factorization of a real symmetric !> positive definite matrix A stored in packed format\&. !> !> The factorization has the form !> A = U**T * U, if UPLO = 'U', or !> A = L * L**T, if UPLO = 'L', !> where U is an upper triangular matrix and L is lower triangular\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> A, packed columnwise in a linear array\&. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> See below for further details\&. !> !> On exit, if INFO = 0, the triangular factor U or L from the !> Cholesky factorization A = U**T*U or A = L*L**T, in the same !> storage format as A\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> is not positive, and the factorization could not be !> completed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The packed storage scheme is illustrated by the following example !> when N = 4, UPLO = 'U': !> !> Two-dimensional storage of the symmetric matrix A: !> !> a11 a12 a13 a14 !> a22 a23 a24 !> a33 a34 (aij = aji) !> a44 !> !> Packed storage of the upper triangle of A: !> !> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] !> .fi .PP .RE .PP .PP Definition at line \fB118\fP of file \fBdpptrf\&.f\fP\&. .SS "subroutine spptrf (character uplo, integer n, real, dimension( * ) ap, integer info)" .PP \fBSPPTRF\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SPPTRF computes the Cholesky factorization of a real symmetric !> positive definite matrix A stored in packed format\&. !> !> The factorization has the form !> A = U**T * U, if UPLO = 'U', or !> A = L * L**T, if UPLO = 'L', !> where U is an upper triangular matrix and L is lower triangular\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is REAL array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> A, packed columnwise in a linear array\&. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> See below for further details\&. !> !> On exit, if INFO = 0, the triangular factor U or L from the !> Cholesky factorization A = U**T*U or A = L*L**T, in the same !> storage format as A\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> is not positive, and the factorization could not be !> completed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The packed storage scheme is illustrated by the following example !> when N = 4, UPLO = 'U': !> !> Two-dimensional storage of the symmetric matrix A: !> !> a11 a12 a13 a14 !> a22 a23 a24 !> a33 a34 (aij = aji) !> a44 !> !> Packed storage of the upper triangle of A: !> !> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] !> .fi .PP .RE .PP .PP Definition at line \fB118\fP of file \fBspptrf\&.f\fP\&. .SS "subroutine zpptrf (character uplo, integer n, complex*16, dimension( * ) ap, integer info)" .PP \fBZPPTRF\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZPPTRF computes the Cholesky factorization of a complex Hermitian !> positive definite matrix A stored in packed format\&. !> !> The factorization has the form !> A = U**H * U, if UPLO = 'U', or !> A = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is lower triangular\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array\&. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> See below for further details\&. !> !> On exit, if INFO = 0, the triangular factor U or L from the !> Cholesky factorization A = U**H*U or A = L*L**H, in the same !> storage format as A\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> is not positive, and the factorization could not be !> completed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The packed storage scheme is illustrated by the following example !> when N = 4, UPLO = 'U': !> !> Two-dimensional storage of the Hermitian matrix A: !> !> a11 a12 a13 a14 !> a22 a23 a24 !> a33 a34 (aij = conjg(aji)) !> a44 !> !> Packed storage of the upper triangle of A: !> !> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] !> .fi .PP .RE .PP .PP Definition at line \fB118\fP of file \fBzpptrf\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.