.TH "ppsv" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME ppsv \- ppsv: factor and solve .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcppsv\fP (uplo, n, nrhs, ap, b, ldb, info)" .br .RI "\fB CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices\fP " .ti -1c .RI "subroutine \fBdppsv\fP (uplo, n, nrhs, ap, b, ldb, info)" .br .RI "\fB DPPSV computes the solution to system of linear equations A * X = B for OTHER matrices\fP " .ti -1c .RI "subroutine \fBsppsv\fP (uplo, n, nrhs, ap, b, ldb, info)" .br .RI "\fB SPPSV computes the solution to system of linear equations A * X = B for OTHER matrices\fP " .ti -1c .RI "subroutine \fBzppsv\fP (uplo, n, nrhs, ap, b, ldb, info)" .br .RI "\fB ZPPSV computes the solution to system of linear equations A * X = B for OTHER matrices\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cppsv (character uplo, integer n, integer nrhs, complex, dimension( * ) ap, complex, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fB CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CPPSV computes the solution to a complex system of linear equations !> A * X = B, !> where A is an N-by-N Hermitian positive definite matrix stored in !> packed format and X and B are N-by-NRHS matrices\&. !> !> The Cholesky decomposition is used to factor A as !> A = U**H * U, if UPLO = 'U', or !> A = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is a lower triangular !> matrix\&. The factored form of A is then used to solve the system of !> equations A * X = B\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of linear equations, i\&.e\&., the order of the !> matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array\&. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> See below for further details\&. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization A = U**H*U or A = L*L**H, in the same storage !> format as A\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B\&. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> of A is not positive, so the factorization could not !> be completed, and the solution has not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The packed storage scheme is illustrated by the following example !> when N = 4, UPLO = 'U': !> !> Two-dimensional storage of the Hermitian matrix A: !> !> a11 a12 a13 a14 !> a22 a23 a24 !> a33 a34 (aij = conjg(aji)) !> a44 !> !> Packed storage of the upper triangle of A: !> !> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] !> .fi .PP .RE .PP .PP Definition at line \fB143\fP of file \fBcppsv\&.f\fP\&. .SS "subroutine dppsv (character uplo, integer n, integer nrhs, double precision, dimension( * ) ap, double precision, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fB DPPSV computes the solution to system of linear equations A * X = B for OTHER matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DPPSV computes the solution to a real system of linear equations !> A * X = B, !> where A is an N-by-N symmetric positive definite matrix stored in !> packed format and X and B are N-by-NRHS matrices\&. !> !> The Cholesky decomposition is used to factor A as !> A = U**T* U, if UPLO = 'U', or !> A = L * L**T, if UPLO = 'L', !> where U is an upper triangular matrix and L is a lower triangular !> matrix\&. The factored form of A is then used to solve the system of !> equations A * X = B\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of linear equations, i\&.e\&., the order of the !> matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> A, packed columnwise in a linear array\&. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> See below for further details\&. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization A = U**T*U or A = L*L**T, in the same storage !> format as A\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B\&. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> of A is not positive, so the factorization could not !> be completed, and the solution has not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The packed storage scheme is illustrated by the following example !> when N = 4, UPLO = 'U': !> !> Two-dimensional storage of the symmetric matrix A: !> !> a11 a12 a13 a14 !> a22 a23 a24 !> a33 a34 (aij = conjg(aji)) !> a44 !> !> Packed storage of the upper triangle of A: !> !> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] !> .fi .PP .RE .PP .PP Definition at line \fB143\fP of file \fBdppsv\&.f\fP\&. .SS "subroutine sppsv (character uplo, integer n, integer nrhs, real, dimension( * ) ap, real, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fB SPPSV computes the solution to system of linear equations A * X = B for OTHER matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SPPSV computes the solution to a real system of linear equations !> A * X = B, !> where A is an N-by-N symmetric positive definite matrix stored in !> packed format and X and B are N-by-NRHS matrices\&. !> !> The Cholesky decomposition is used to factor A as !> A = U**T* U, if UPLO = 'U', or !> A = L * L**T, if UPLO = 'L', !> where U is an upper triangular matrix and L is a lower triangular !> matrix\&. The factored form of A is then used to solve the system of !> equations A * X = B\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of linear equations, i\&.e\&., the order of the !> matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is REAL array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> A, packed columnwise in a linear array\&. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> See below for further details\&. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization A = U**T*U or A = L*L**T, in the same storage !> format as A\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B\&. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> of A is not positive, so the factorization could not !> be completed, and the solution has not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The packed storage scheme is illustrated by the following example !> when N = 4, UPLO = 'U': !> !> Two-dimensional storage of the symmetric matrix A: !> !> a11 a12 a13 a14 !> a22 a23 a24 !> a33 a34 (aij = conjg(aji)) !> a44 !> !> Packed storage of the upper triangle of A: !> !> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] !> .fi .PP .RE .PP .PP Definition at line \fB143\fP of file \fBsppsv\&.f\fP\&. .SS "subroutine zppsv (character uplo, integer n, integer nrhs, complex*16, dimension( * ) ap, complex*16, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fB ZPPSV computes the solution to system of linear equations A * X = B for OTHER matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZPPSV computes the solution to a complex system of linear equations !> A * X = B, !> where A is an N-by-N Hermitian positive definite matrix stored in !> packed format and X and B are N-by-NRHS matrices\&. !> !> The Cholesky decomposition is used to factor A as !> A = U**H * U, if UPLO = 'U', or !> A = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is a lower triangular !> matrix\&. The factored form of A is then used to solve the system of !> equations A * X = B\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of linear equations, i\&.e\&., the order of the !> matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array\&. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> See below for further details\&. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization A = U**H*U or A = L*L**H, in the same storage !> format as A\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B\&. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> of A is not positive, so the factorization could not !> be completed, and the solution has not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The packed storage scheme is illustrated by the following example !> when N = 4, UPLO = 'U': !> !> Two-dimensional storage of the Hermitian matrix A: !> !> a11 a12 a13 a14 !> a22 a23 a24 !> a33 a34 (aij = conjg(aji)) !> a44 !> !> Packed storage of the upper triangle of A: !> !> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] !> .fi .PP .RE .PP .PP Definition at line \fB143\fP of file \fBzppsv\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.