.TH "pprfs" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME pprfs \- pprfs: iterative refinement .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcpprfs\fP (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork, info)" .br .RI "\fBCPPRFS\fP " .ti -1c .RI "subroutine \fBdpprfs\fP (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, iwork, info)" .br .RI "\fBDPPRFS\fP " .ti -1c .RI "subroutine \fBspprfs\fP (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, iwork, info)" .br .RI "\fBSPPRFS\fP " .ti -1c .RI "subroutine \fBzpprfs\fP (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork, info)" .br .RI "\fBZPPRFS\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cpprfs (character uplo, integer n, integer nrhs, complex, dimension( * ) ap, complex, dimension( * ) afp, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)" .PP \fBCPPRFS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CPPRFS improves the computed solution to a system of linear !> equations when the coefficient matrix is Hermitian positive definite !> and packed, and provides error bounds and backward error estimates !> for the solution\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrices B and X\&. NRHS >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX array, dimension (N*(N+1)/2) !> The upper or lower triangle of the Hermitian matrix A, packed !> columnwise in a linear array\&. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> .fi .PP .br \fIAFP\fP .PP .nf !> AFP is COMPLEX array, dimension (N*(N+1)/2) !> The triangular factor U or L from the Cholesky factorization !> A = U**H*U or A = L*L**H, as computed by SPPTRF/CPPTRF, !> packed columnwise in a linear array in the same format as A !> (see AP)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX array, dimension (LDB,NRHS) !> The right hand side matrix B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is COMPLEX array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by CPPTRS\&. !> On exit, the improved solution matrix X\&. !> .fi .PP .br \fILDX\fP .PP .nf !> LDX is INTEGER !> The leading dimension of the array X\&. LDX >= max(1,N)\&. !> .fi .PP .br \fIFERR\fP .PP .nf !> FERR is REAL array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X)\&. !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j)\&. The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error\&. !> .fi .PP .br \fIBERR\fP .PP .nf !> BERR is REAL array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i\&.e\&., the smallest relative change in !> any element of A or B that makes X(j) an exact solution)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX array, dimension (2*N) !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is REAL array, dimension (N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBInternal Parameters:\fP .RS 4 .PP .nf !> ITMAX is the maximum number of steps of iterative refinement\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB169\fP of file \fBcpprfs\&.f\fP\&. .SS "subroutine dpprfs (character uplo, integer n, integer nrhs, double precision, dimension( * ) ap, double precision, dimension( * ) afp, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info)" .PP \fBDPPRFS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DPPRFS improves the computed solution to a system of linear !> equations when the coefficient matrix is symmetric positive definite !> and packed, and provides error bounds and backward error estimates !> for the solution\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrices B and X\&. NRHS >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> The upper or lower triangle of the symmetric matrix A, packed !> columnwise in a linear array\&. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> .fi .PP .br \fIAFP\fP .PP .nf !> AFP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> The triangular factor U or L from the Cholesky factorization !> A = U**T*U or A = L*L**T, as computed by DPPTRF/ZPPTRF, !> packed columnwise in a linear array in the same format as A !> (see AP)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> The right hand side matrix B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is DOUBLE PRECISION array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by DPPTRS\&. !> On exit, the improved solution matrix X\&. !> .fi .PP .br \fILDX\fP .PP .nf !> LDX is INTEGER !> The leading dimension of the array X\&. LDX >= max(1,N)\&. !> .fi .PP .br \fIFERR\fP .PP .nf !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X)\&. !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j)\&. The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error\&. !> .fi .PP .br \fIBERR\fP .PP .nf !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i\&.e\&., the smallest relative change in !> any element of A or B that makes X(j) an exact solution)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (3*N) !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBInternal Parameters:\fP .RS 4 .PP .nf !> ITMAX is the maximum number of steps of iterative refinement\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB169\fP of file \fBdpprfs\&.f\fP\&. .SS "subroutine spprfs (character uplo, integer n, integer nrhs, real, dimension( * ) ap, real, dimension( * ) afp, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)" .PP \fBSPPRFS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SPPRFS improves the computed solution to a system of linear !> equations when the coefficient matrix is symmetric positive definite !> and packed, and provides error bounds and backward error estimates !> for the solution\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrices B and X\&. NRHS >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is REAL array, dimension (N*(N+1)/2) !> The upper or lower triangle of the symmetric matrix A, packed !> columnwise in a linear array\&. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> .fi .PP .br \fIAFP\fP .PP .nf !> AFP is REAL array, dimension (N*(N+1)/2) !> The triangular factor U or L from the Cholesky factorization !> A = U**T*U or A = L*L**T, as computed by SPPTRF/CPPTRF, !> packed columnwise in a linear array in the same format as A !> (see AP)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,NRHS) !> The right hand side matrix B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is REAL array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by SPPTRS\&. !> On exit, the improved solution matrix X\&. !> .fi .PP .br \fILDX\fP .PP .nf !> LDX is INTEGER !> The leading dimension of the array X\&. LDX >= max(1,N)\&. !> .fi .PP .br \fIFERR\fP .PP .nf !> FERR is REAL array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X)\&. !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j)\&. The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error\&. !> .fi .PP .br \fIBERR\fP .PP .nf !> BERR is REAL array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i\&.e\&., the smallest relative change in !> any element of A or B that makes X(j) an exact solution)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (3*N) !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBInternal Parameters:\fP .RS 4 .PP .nf !> ITMAX is the maximum number of steps of iterative refinement\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB169\fP of file \fBspprfs\&.f\fP\&. .SS "subroutine zpprfs (character uplo, integer n, integer nrhs, complex*16, dimension( * ) ap, complex*16, dimension( * ) afp, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)" .PP \fBZPPRFS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZPPRFS improves the computed solution to a system of linear !> equations when the coefficient matrix is Hermitian positive definite !> and packed, and provides error bounds and backward error estimates !> for the solution\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrices B and X\&. NRHS >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangle of the Hermitian matrix A, packed !> columnwise in a linear array\&. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> .fi .PP .br \fIAFP\fP .PP .nf !> AFP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The triangular factor U or L from the Cholesky factorization !> A = U**H*U or A = L*L**H, as computed by DPPTRF/ZPPTRF, !> packed columnwise in a linear array in the same format as A !> (see AP)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side matrix B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by ZPPTRS\&. !> On exit, the improved solution matrix X\&. !> .fi .PP .br \fILDX\fP .PP .nf !> LDX is INTEGER !> The leading dimension of the array X\&. LDX >= max(1,N)\&. !> .fi .PP .br \fIFERR\fP .PP .nf !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X)\&. !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j)\&. The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error\&. !> .fi .PP .br \fIBERR\fP .PP .nf !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i\&.e\&., the smallest relative change in !> any element of A or B that makes X(j) an exact solution)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (2*N) !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBInternal Parameters:\fP .RS 4 .PP .nf !> ITMAX is the maximum number of steps of iterative refinement\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB169\fP of file \fBzpprfs\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.