.TH "potri" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME potri \- potri: triangular inverse .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcpotri\fP (uplo, n, a, lda, info)" .br .RI "\fBCPOTRI\fP " .ti -1c .RI "subroutine \fBdpotri\fP (uplo, n, a, lda, info)" .br .RI "\fBDPOTRI\fP " .ti -1c .RI "subroutine \fBspotri\fP (uplo, n, a, lda, info)" .br .RI "\fBSPOTRI\fP " .ti -1c .RI "subroutine \fBzpotri\fP (uplo, n, a, lda, info)" .br .RI "\fBZPOTRI\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cpotri (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, integer info)" .PP \fBCPOTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CPOTRI computes the inverse of a complex Hermitian positive definite !> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H !> computed by CPOTRF\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension (LDA,N) !> On entry, the triangular factor U or L from the Cholesky !> factorization A = U**H*U or A = L*L**H, as computed by !> CPOTRF\&. !> On exit, the upper or lower triangle of the (Hermitian) !> inverse of A, overwriting the input factor U or L\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the (i,i) element of the factor U or L is !> zero, and the inverse could not be computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB94\fP of file \fBcpotri\&.f\fP\&. .SS "subroutine dpotri (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, integer info)" .PP \fBDPOTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DPOTRI computes the inverse of a real symmetric positive definite !> matrix A using the Cholesky factorization A = U**T*U or A = L*L**T !> computed by DPOTRF\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the triangular factor U or L from the Cholesky !> factorization A = U**T*U or A = L*L**T, as computed by !> DPOTRF\&. !> On exit, the upper or lower triangle of the (symmetric) !> inverse of A, overwriting the input factor U or L\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the (i,i) element of the factor U or L is !> zero, and the inverse could not be computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB94\fP of file \fBdpotri\&.f\fP\&. .SS "subroutine spotri (character uplo, integer n, real, dimension( lda, * ) a, integer lda, integer info)" .PP \fBSPOTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SPOTRI computes the inverse of a real symmetric positive definite !> matrix A using the Cholesky factorization A = U**T*U or A = L*L**T !> computed by SPOTRF\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension (LDA,N) !> On entry, the triangular factor U or L from the Cholesky !> factorization A = U**T*U or A = L*L**T, as computed by !> SPOTRF\&. !> On exit, the upper or lower triangle of the (symmetric) !> inverse of A, overwriting the input factor U or L\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the (i,i) element of the factor U or L is !> zero, and the inverse could not be computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB94\fP of file \fBspotri\&.f\fP\&. .SS "subroutine zpotri (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer info)" .PP \fBZPOTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZPOTRI computes the inverse of a complex Hermitian positive definite !> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H !> computed by ZPOTRF\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the triangular factor U or L from the Cholesky !> factorization A = U**H*U or A = L*L**H, as computed by !> ZPOTRF\&. !> On exit, the upper or lower triangle of the (Hermitian) !> inverse of A, overwriting the input factor U or L\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the (i,i) element of the factor U or L is !> zero, and the inverse could not be computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB94\fP of file \fBzpotri\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.