.TH "posv" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME posv \- posv: factor and solve .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcposv\fP (uplo, n, nrhs, a, lda, b, ldb, info)" .br .RI "\fB CPOSV computes the solution to system of linear equations A * X = B for PO matrices\fP " .ti -1c .RI "subroutine \fBdposv\fP (uplo, n, nrhs, a, lda, b, ldb, info)" .br .RI "\fB DPOSV computes the solution to system of linear equations A * X = B for PO matrices\fP " .ti -1c .RI "subroutine \fBsposv\fP (uplo, n, nrhs, a, lda, b, ldb, info)" .br .RI "\fB SPOSV computes the solution to system of linear equations A * X = B for PO matrices\fP " .ti -1c .RI "subroutine \fBzposv\fP (uplo, n, nrhs, a, lda, b, ldb, info)" .br .RI "\fB ZPOSV computes the solution to system of linear equations A * X = B for PO matrices\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cposv (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fB CPOSV computes the solution to system of linear equations A * X = B for PO matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CPOSV computes the solution to a complex system of linear equations !> A * X = B, !> where A is an N-by-N Hermitian positive definite matrix and X and B !> are N-by-NRHS matrices\&. !> !> The Cholesky decomposition is used to factor A as !> A = U**H* U, if UPLO = 'U', or !> A = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is a lower triangular !> matrix\&. The factored form of A is then used to solve the system of !> equations A * X = B\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of linear equations, i\&.e\&., the order of the !> matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension (LDA,N) !> On entry, the Hermitian matrix A\&. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced\&. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced\&. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization A = U**H*U or A = L*L**H\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B\&. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> of A is not positive, so the factorization could not !> be completed, and the solution has not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB129\fP of file \fBcposv\&.f\fP\&. .SS "subroutine dposv (character uplo, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fB DPOSV computes the solution to system of linear equations A * X = B for PO matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DPOSV computes the solution to a real system of linear equations !> A * X = B, !> where A is an N-by-N symmetric positive definite matrix and X and B !> are N-by-NRHS matrices\&. !> !> The Cholesky decomposition is used to factor A as !> A = U**T* U, if UPLO = 'U', or !> A = L * L**T, if UPLO = 'L', !> where U is an upper triangular matrix and L is a lower triangular !> matrix\&. The factored form of A is then used to solve the system of !> equations A * X = B\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of linear equations, i\&.e\&., the order of the !> matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the symmetric matrix A\&. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced\&. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced\&. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization A = U**T*U or A = L*L**T\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B\&. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> of A is not positive, so the factorization could not !> be completed, and the solution has not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB129\fP of file \fBdposv\&.f\fP\&. .SS "subroutine sposv (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fB SPOSV computes the solution to system of linear equations A * X = B for PO matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SPOSV computes the solution to a real system of linear equations !> A * X = B, !> where A is an N-by-N symmetric positive definite matrix and X and B !> are N-by-NRHS matrices\&. !> !> The Cholesky decomposition is used to factor A as !> A = U**T* U, if UPLO = 'U', or !> A = L * L**T, if UPLO = 'L', !> where U is an upper triangular matrix and L is a lower triangular !> matrix\&. The factored form of A is then used to solve the system of !> equations A * X = B\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of linear equations, i\&.e\&., the order of the !> matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension (LDA,N) !> On entry, the symmetric matrix A\&. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced\&. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced\&. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization A = U**T*U or A = L*L**T\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B\&. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> of A is not positive, so the factorization could not !> be completed, and the solution has not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB129\fP of file \fBsposv\&.f\fP\&. .SS "subroutine zposv (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fB ZPOSV computes the solution to system of linear equations A * X = B for PO matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZPOSV computes the solution to a complex system of linear equations !> A * X = B, !> where A is an N-by-N Hermitian positive definite matrix and X and B !> are N-by-NRHS matrices\&. !> !> The Cholesky decomposition is used to factor A as !> A = U**H* U, if UPLO = 'U', or !> A = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is a lower triangular !> matrix\&. The factored form of A is then used to solve the system of !> equations A * X = B\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of linear equations, i\&.e\&., the order of the !> matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the Hermitian matrix A\&. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced\&. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced\&. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization A = U**H *U or A = L*L**H\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B\&. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> of A is not positive, so the factorization could not !> be completed, and the solution has not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB129\fP of file \fBzposv\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.