pbtrs(3) Library Functions Manual pbtrs(3) NAME pbtrs - pbtrs: triangular solve using factor SYNOPSIS Functions subroutine cpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info) CPBTRS subroutine dpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info) DPBTRS subroutine spbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info) SPBTRS subroutine zpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info) ZPBTRS Detailed Description Function Documentation subroutine cpbtrs (character uplo, integer n, integer kd, integer nrhs, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( ldb, * ) b, integer ldb, integer info) CPBTRS Purpose: CPBTRS solves a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangular factor stored in AB; = 'L': Lower triangular factor stored in AB. N N is INTEGER The order of the matrix A. N >= 0. KD KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AB AB is COMPLEX array, dimension (LDAB,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H of the band matrix A, stored in the first KD+1 rows of the array. The j-th column of U or L is stored in the j-th column of the array AB as follows: if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD+1. B B is COMPLEX array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 120 of file cpbtrs.f. subroutine dpbtrs (character uplo, integer n, integer kd, integer nrhs, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldb, * ) b, integer ldb, integer info) DPBTRS Purpose: DPBTRS solves a system of linear equations A*X = B with a symmetric positive definite band matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPBTRF. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangular factor stored in AB; = 'L': Lower triangular factor stored in AB. N N is INTEGER The order of the matrix A. N >= 0. KD KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AB AB is DOUBLE PRECISION array, dimension (LDAB,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T of the band matrix A, stored in the first KD+1 rows of the array. The j-th column of U or L is stored in the j-th column of the array AB as follows: if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD+1. B B is DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 120 of file dpbtrs.f. subroutine spbtrs (character uplo, integer n, integer kd, integer nrhs, real, dimension( ldab, * ) ab, integer ldab, real, dimension( ldb, * ) b, integer ldb, integer info) SPBTRS Purpose: SPBTRS solves a system of linear equations A*X = B with a symmetric positive definite band matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangular factor stored in AB; = 'L': Lower triangular factor stored in AB. N N is INTEGER The order of the matrix A. N >= 0. KD KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AB AB is REAL array, dimension (LDAB,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T of the band matrix A, stored in the first KD+1 rows of the array. The j-th column of U or L is stored in the j-th column of the array AB as follows: if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD+1. B B is REAL array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 120 of file spbtrs.f. subroutine zpbtrs (character uplo, integer n, integer kd, integer nrhs, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldb, * ) b, integer ldb, integer info) ZPBTRS Purpose: ZPBTRS solves a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the Cholesky factorization A = U**H *U or A = L*L**H computed by ZPBTRF. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangular factor stored in AB; = 'L': Lower triangular factor stored in AB. N N is INTEGER The order of the matrix A. N >= 0. KD KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AB AB is COMPLEX*16 array, dimension (LDAB,N) The triangular factor U or L from the Cholesky factorization A = U**H *U or A = L*L**H of the band matrix A, stored in the first KD+1 rows of the array. The j-th column of U or L is stored in the j-th column of the array AB as follows: if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD+1. B B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 120 of file zpbtrs.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 pbtrs(3)