.TH "pbtrs" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME pbtrs \- pbtrs: triangular solve using factor .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcpbtrs\fP (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)" .br .RI "\fBCPBTRS\fP " .ti -1c .RI "subroutine \fBdpbtrs\fP (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)" .br .RI "\fBDPBTRS\fP " .ti -1c .RI "subroutine \fBspbtrs\fP (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)" .br .RI "\fBSPBTRS\fP " .ti -1c .RI "subroutine \fBzpbtrs\fP (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)" .br .RI "\fBZPBTRS\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cpbtrs (character uplo, integer n, integer kd, integer nrhs, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fBCPBTRS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CPBTRS solves a system of linear equations A*X = B with a Hermitian !> positive definite band matrix A using the Cholesky factorization !> A = U**H*U or A = L*L**H computed by CPBTRF\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangular factor stored in AB; !> = 'L': Lower triangular factor stored in AB\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIKD\fP .PP .nf !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'\&. KD >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is COMPLEX array, dimension (LDAB,N) !> The triangular factor U or L from the Cholesky factorization !> A = U**H*U or A = L*L**H of the band matrix A, stored in the !> first KD+1 rows of the array\&. The j-th column of U or L is !> stored in the j-th column of the array AB as follows: !> if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; !> if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd)\&. !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array AB\&. LDAB >= KD+1\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B\&. !> On exit, the solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB120\fP of file \fBcpbtrs\&.f\fP\&. .SS "subroutine dpbtrs (character uplo, integer n, integer kd, integer nrhs, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fBDPBTRS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DPBTRS solves a system of linear equations A*X = B with a symmetric !> positive definite band matrix A using the Cholesky factorization !> A = U**T*U or A = L*L**T computed by DPBTRF\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangular factor stored in AB; !> = 'L': Lower triangular factor stored in AB\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIKD\fP .PP .nf !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'\&. KD >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is DOUBLE PRECISION array, dimension (LDAB,N) !> The triangular factor U or L from the Cholesky factorization !> A = U**T*U or A = L*L**T of the band matrix A, stored in the !> first KD+1 rows of the array\&. The j-th column of U or L is !> stored in the j-th column of the array AB as follows: !> if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; !> if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd)\&. !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array AB\&. LDAB >= KD+1\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B\&. !> On exit, the solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB120\fP of file \fBdpbtrs\&.f\fP\&. .SS "subroutine spbtrs (character uplo, integer n, integer kd, integer nrhs, real, dimension( ldab, * ) ab, integer ldab, real, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fBSPBTRS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SPBTRS solves a system of linear equations A*X = B with a symmetric !> positive definite band matrix A using the Cholesky factorization !> A = U**T*U or A = L*L**T computed by SPBTRF\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangular factor stored in AB; !> = 'L': Lower triangular factor stored in AB\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIKD\fP .PP .nf !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'\&. KD >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is REAL array, dimension (LDAB,N) !> The triangular factor U or L from the Cholesky factorization !> A = U**T*U or A = L*L**T of the band matrix A, stored in the !> first KD+1 rows of the array\&. The j-th column of U or L is !> stored in the j-th column of the array AB as follows: !> if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; !> if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd)\&. !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array AB\&. LDAB >= KD+1\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is REAL array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B\&. !> On exit, the solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB120\fP of file \fBspbtrs\&.f\fP\&. .SS "subroutine zpbtrs (character uplo, integer n, integer kd, integer nrhs, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fBZPBTRS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZPBTRS solves a system of linear equations A*X = B with a Hermitian !> positive definite band matrix A using the Cholesky factorization !> A = U**H *U or A = L*L**H computed by ZPBTRF\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangular factor stored in AB; !> = 'L': Lower triangular factor stored in AB\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIKD\fP .PP .nf !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'\&. KD >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is COMPLEX*16 array, dimension (LDAB,N) !> The triangular factor U or L from the Cholesky factorization !> A = U**H *U or A = L*L**H of the band matrix A, stored in the !> first KD+1 rows of the array\&. The j-th column of U or L is !> stored in the j-th column of the array AB as follows: !> if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; !> if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd)\&. !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array AB\&. LDAB >= KD+1\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B\&. !> On exit, the solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB120\fP of file \fBzpbtrs\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.