.TH "lasq1" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME lasq1 \- lasq1: dqds step .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBdlasq1\fP (n, d, e, work, info)" .br .RI "\fBDLASQ1\fP computes the singular values of a real square bidiagonal matrix\&. Used by sbdsqr\&. " .ti -1c .RI "subroutine \fBslasq1\fP (n, d, e, work, info)" .br .RI "\fBSLASQ1\fP computes the singular values of a real square bidiagonal matrix\&. Used by sbdsqr\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine dlasq1 (integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( * ) work, integer info)" .PP \fBDLASQ1\fP computes the singular values of a real square bidiagonal matrix\&. Used by sbdsqr\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DLASQ1 computes the singular values of a real N-by-N bidiagonal !> matrix with diagonal D and off-diagonal E\&. The singular values !> are computed to high relative accuracy, in the absence of !> denormalization, underflow and overflow\&. The algorithm was first !> presented in !> !> by K\&. V\&. !> Fernando and B\&. N\&. Parlett, Numer\&. Math\&., Vol-67, No\&. 2, pp\&. 191-230, !> 1994, !> !> and the present implementation is described in , LAPACK Working Note\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf !> N is INTEGER !> The number of rows and columns in the matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (N) !> On entry, D contains the diagonal elements of the !> bidiagonal matrix whose SVD is desired\&. On normal exit, !> D contains the singular values in decreasing order\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is DOUBLE PRECISION array, dimension (N) !> On entry, elements E(1:N-1) contain the off-diagonal elements !> of the bidiagonal matrix whose SVD is desired\&. !> On exit, E is overwritten\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (4*N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: the algorithm failed !> = 1, a split was marked by a positive value in E !> = 2, current block of Z not diagonalized after 100*N !> iterations (in inner while loop) On exit D and E !> represent a matrix with the same singular values !> which the calling subroutine could use to finish the !> computation, or even feed back into DLASQ1 !> = 3, termination criterion of outer while loop not met !> (program created more than N unreduced blocks) !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB107\fP of file \fBdlasq1\&.f\fP\&. .SS "subroutine slasq1 (integer n, real, dimension( * ) d, real, dimension( * ) e, real, dimension( * ) work, integer info)" .PP \fBSLASQ1\fP computes the singular values of a real square bidiagonal matrix\&. Used by sbdsqr\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SLASQ1 computes the singular values of a real N-by-N bidiagonal !> matrix with diagonal D and off-diagonal E\&. The singular values !> are computed to high relative accuracy, in the absence of !> denormalization, underflow and overflow\&. The algorithm was first !> presented in !> !> by K\&. V\&. !> Fernando and B\&. N\&. Parlett, Numer\&. Math\&., Vol-67, No\&. 2, pp\&. 191-230, !> 1994, !> !> and the present implementation is described in , LAPACK Working Note\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf !> N is INTEGER !> The number of rows and columns in the matrix\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is REAL array, dimension (N) !> On entry, D contains the diagonal elements of the !> bidiagonal matrix whose SVD is desired\&. On normal exit, !> D contains the singular values in decreasing order\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is REAL array, dimension (N) !> On entry, elements E(1:N-1) contain the off-diagonal elements !> of the bidiagonal matrix whose SVD is desired\&. !> On exit, E is overwritten\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (4*N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: the algorithm failed !> = 1, a split was marked by a positive value in E !> = 2, current block of Z not diagonalized after 100*N !> iterations (in inner while loop) On exit D and E !> represent a matrix with the same singular values !> which the calling subroutine could use to finish the !> computation, or even feed back into SLASQ1 !> = 3, termination criterion of outer while loop not met !> (program created more than N unreduced blocks) !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB107\fP of file \fBslasq1\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.