.TH "lanhp" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME lanhp \- lan{hp,sp}: Hermitian/symmetric matrix, packed .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "real function \fBclanhp\fP (norm, uplo, n, ap, work)" .br .RI "\fBCLANHP\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form\&. " .ti -1c .RI "real function \fBclansp\fP (norm, uplo, n, ap, work)" .br .RI "\fBCLANSP\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form\&. " .ti -1c .RI "double precision function \fBdlansp\fP (norm, uplo, n, ap, work)" .br .RI "\fBDLANSP\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form\&. " .ti -1c .RI "real function \fBslansp\fP (norm, uplo, n, ap, work)" .br .RI "\fBSLANSP\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form\&. " .ti -1c .RI "double precision function \fBzlanhp\fP (norm, uplo, n, ap, work)" .br .RI "\fBZLANHP\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form\&. " .ti -1c .RI "double precision function \fBzlansp\fP (norm, uplo, n, ap, work)" .br .RI "\fBZLANSP\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "real function clanhp (character norm, character uplo, integer n, complex, dimension( * ) ap, real, dimension( * ) work)" .PP \fBCLANHP\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CLANHP returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> complex hermitian matrix A, supplied in packed form\&. !> .fi .PP .RE .PP \fBReturns\fP .RS 4 CLANHP .PP .nf !> !> CLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares)\&. Note that max(abs(A(i,j))) is not a consistent matrix norm\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fINORM\fP .PP .nf !> NORM is CHARACTER*1 !> Specifies the value to be returned in CLANHP as described !> above\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> hermitian matrix A is supplied\&. !> = 'U': Upper triangular part of A is supplied !> = 'L': Lower triangular part of A is supplied !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. When N = 0, CLANHP is !> set to zero\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX array, dimension (N*(N+1)/2) !> The upper or lower triangle of the hermitian matrix A, packed !> columnwise in a linear array\&. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> Note that the imaginary parts of the diagonal elements need !> not be set and are assumed to be zero\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, !> WORK is not referenced\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB116\fP of file \fBclanhp\&.f\fP\&. .SS "real function clansp (character norm, character uplo, integer n, complex, dimension( * ) ap, real, dimension( * ) work)" .PP \fBCLANSP\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CLANSP returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> complex symmetric matrix A, supplied in packed form\&. !> .fi .PP .RE .PP \fBReturns\fP .RS 4 CLANSP .PP .nf !> !> CLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares)\&. Note that max(abs(A(i,j))) is not a consistent matrix norm\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fINORM\fP .PP .nf !> NORM is CHARACTER*1 !> Specifies the value to be returned in CLANSP as described !> above\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is supplied\&. !> = 'U': Upper triangular part of A is supplied !> = 'L': Lower triangular part of A is supplied !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. When N = 0, CLANSP is !> set to zero\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX array, dimension (N*(N+1)/2) !> The upper or lower triangle of the symmetric matrix A, packed !> columnwise in a linear array\&. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, !> WORK is not referenced\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB114\fP of file \fBclansp\&.f\fP\&. .SS "double precision function dlansp (character norm, character uplo, integer n, double precision, dimension( * ) ap, double precision, dimension( * ) work)" .PP \fBDLANSP\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DLANSP returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> real symmetric matrix A, supplied in packed form\&. !> .fi .PP .RE .PP \fBReturns\fP .RS 4 DLANSP .PP .nf !> !> DLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares)\&. Note that max(abs(A(i,j))) is not a consistent matrix norm\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fINORM\fP .PP .nf !> NORM is CHARACTER*1 !> Specifies the value to be returned in DLANSP as described !> above\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is supplied\&. !> = 'U': Upper triangular part of A is supplied !> = 'L': Lower triangular part of A is supplied !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. When N = 0, DLANSP is !> set to zero\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> The upper or lower triangle of the symmetric matrix A, packed !> columnwise in a linear array\&. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, !> WORK is not referenced\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB113\fP of file \fBdlansp\&.f\fP\&. .SS "real function slansp (character norm, character uplo, integer n, real, dimension( * ) ap, real, dimension( * ) work)" .PP \fBSLANSP\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SLANSP returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> real symmetric matrix A, supplied in packed form\&. !> .fi .PP .RE .PP \fBReturns\fP .RS 4 SLANSP .PP .nf !> !> SLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares)\&. Note that max(abs(A(i,j))) is not a consistent matrix norm\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fINORM\fP .PP .nf !> NORM is CHARACTER*1 !> Specifies the value to be returned in SLANSP as described !> above\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is supplied\&. !> = 'U': Upper triangular part of A is supplied !> = 'L': Lower triangular part of A is supplied !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. When N = 0, SLANSP is !> set to zero\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is REAL array, dimension (N*(N+1)/2) !> The upper or lower triangle of the symmetric matrix A, packed !> columnwise in a linear array\&. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is REAL array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, !> WORK is not referenced\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB113\fP of file \fBslansp\&.f\fP\&. .SS "double precision function zlanhp (character norm, character uplo, integer n, complex*16, dimension( * ) ap, double precision, dimension( * ) work)" .PP \fBZLANHP\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLANHP returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> complex hermitian matrix A, supplied in packed form\&. !> .fi .PP .RE .PP \fBReturns\fP .RS 4 ZLANHP .PP .nf !> !> ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares)\&. Note that max(abs(A(i,j))) is not a consistent matrix norm\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fINORM\fP .PP .nf !> NORM is CHARACTER*1 !> Specifies the value to be returned in ZLANHP as described !> above\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> hermitian matrix A is supplied\&. !> = 'U': Upper triangular part of A is supplied !> = 'L': Lower triangular part of A is supplied !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. When N = 0, ZLANHP is !> set to zero\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangle of the hermitian matrix A, packed !> columnwise in a linear array\&. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> Note that the imaginary parts of the diagonal elements need !> not be set and are assumed to be zero\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, !> WORK is not referenced\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB116\fP of file \fBzlanhp\&.f\fP\&. .SS "double precision function zlansp (character norm, character uplo, integer n, complex*16, dimension( * ) ap, double precision, dimension( * ) work)" .PP \fBZLANSP\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLANSP returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> complex symmetric matrix A, supplied in packed form\&. !> .fi .PP .RE .PP \fBReturns\fP .RS 4 ZLANSP .PP .nf !> !> ZLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares)\&. Note that max(abs(A(i,j))) is not a consistent matrix norm\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fINORM\fP .PP .nf !> NORM is CHARACTER*1 !> Specifies the value to be returned in ZLANSP as described !> above\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is supplied\&. !> = 'U': Upper triangular part of A is supplied !> = 'L': Lower triangular part of A is supplied !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. When N = 0, ZLANSP is !> set to zero\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangle of the symmetric matrix A, packed !> columnwise in a linear array\&. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, !> WORK is not referenced\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB114\fP of file \fBzlansp\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.