.TH "her" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME her \- {he,sy}r: Hermitian/symmetric rank-1 update .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcher\fP (uplo, n, alpha, x, incx, a, lda)" .br .RI "\fBCHER\fP " .ti -1c .RI "subroutine \fBdsyr\fP (uplo, n, alpha, x, incx, a, lda)" .br .RI "\fBDSYR\fP " .ti -1c .RI "subroutine \fBssyr\fP (uplo, n, alpha, x, incx, a, lda)" .br .RI "\fBSSYR\fP " .ti -1c .RI "subroutine \fBzher\fP (uplo, n, alpha, x, incx, a, lda)" .br .RI "\fBZHER\fP " .ti -1c .RI "subroutine \fBcsyr\fP (uplo, n, alpha, x, incx, a, lda)" .br .RI "\fBCSYR\fP performs the symmetric rank-1 update of a complex symmetric matrix\&. " .ti -1c .RI "subroutine \fBzsyr\fP (uplo, n, alpha, x, incx, a, lda)" .br .RI "\fBZSYR\fP performs the symmetric rank-1 update of a complex symmetric matrix\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cher (character uplo, integer n, real alpha, complex, dimension(*) x, integer incx, complex, dimension(lda,*) a, integer lda)" .PP \fBCHER\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CHER performs the hermitian rank 1 operation !> !> A := alpha*x*x**H + A, !> !> where alpha is a real scalar, x is an n element vector and A is an !> n by n hermitian matrix\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array A is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of A !> is to be referenced\&. !> !> UPLO = 'L' or 'l' Only the lower triangular part of A !> is to be referenced\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> On entry, N specifies the order of the matrix A\&. !> N must be at least zero\&. !> .fi .PP .br \fIALPHA\fP .PP .nf !> ALPHA is REAL !> On entry, ALPHA specifies the scalar alpha\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is COMPLEX array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) )\&. !> Before entry, the incremented array X must contain the n !> element vector x\&. !> .fi .PP .br \fIINCX\fP .PP .nf !> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X\&. INCX must not be zero\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension ( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array A must contain the upper !> triangular part of the hermitian matrix and the strictly !> lower triangular part of A is not referenced\&. On exit, the !> upper triangular part of the array A is overwritten by the !> upper triangular part of the updated matrix\&. !> Before entry with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array A must contain the lower !> triangular part of the hermitian matrix and the strictly !> upper triangular part of A is not referenced\&. On exit, the !> lower triangular part of the array A is overwritten by the !> lower triangular part of the updated matrix\&. !> Note that the imaginary parts of the diagonal elements need !> not be set, they are assumed to be zero, and on exit they !> are set to zero\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program\&. LDA must be at least !> max( 1, n )\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> Level 2 Blas routine\&. !> !> -- Written on 22-October-1986\&. !> Jack Dongarra, Argonne National Lab\&. !> Jeremy Du Croz, Nag Central Office\&. !> Sven Hammarling, Nag Central Office\&. !> Richard Hanson, Sandia National Labs\&. !> .fi .PP .RE .PP .PP Definition at line \fB134\fP of file \fBcher\&.f\fP\&. .SS "subroutine csyr (character uplo, integer n, complex alpha, complex, dimension( * ) x, integer incx, complex, dimension( lda, * ) a, integer lda)" .PP \fBCSYR\fP performs the symmetric rank-1 update of a complex symmetric matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CSYR performs the symmetric rank 1 operation !> !> A := alpha*x*x**H + A, !> !> where alpha is a complex scalar, x is an n element vector and A is an !> n by n symmetric matrix\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array A is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of A !> is to be referenced\&. !> !> UPLO = 'L' or 'l' Only the lower triangular part of A !> is to be referenced\&. !> !> Unchanged on exit\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> On entry, N specifies the order of the matrix A\&. !> N must be at least zero\&. !> Unchanged on exit\&. !> .fi .PP .br \fIALPHA\fP .PP .nf !> ALPHA is COMPLEX !> On entry, ALPHA specifies the scalar alpha\&. !> Unchanged on exit\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is COMPLEX array, dimension at least !> ( 1 + ( N - 1 )*abs( INCX ) )\&. !> Before entry, the incremented array X must contain the N- !> element vector x\&. !> Unchanged on exit\&. !> .fi .PP .br \fIINCX\fP .PP .nf !> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X\&. INCX must not be zero\&. !> Unchanged on exit\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension ( LDA, N ) !> Before entry, with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array A must contain the upper !> triangular part of the symmetric matrix and the strictly !> lower triangular part of A is not referenced\&. On exit, the !> upper triangular part of the array A is overwritten by the !> upper triangular part of the updated matrix\&. !> Before entry, with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array A must contain the lower !> triangular part of the symmetric matrix and the strictly !> upper triangular part of A is not referenced\&. On exit, the !> lower triangular part of the array A is overwritten by the !> lower triangular part of the updated matrix\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program\&. LDA must be at least !> max( 1, N )\&. !> Unchanged on exit\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB134\fP of file \fBcsyr\&.f\fP\&. .SS "subroutine dsyr (character uplo, integer n, double precision alpha, double precision, dimension(*) x, integer incx, double precision, dimension(lda,*) a, integer lda)" .PP \fBDSYR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DSYR performs the symmetric rank 1 operation !> !> A := alpha*x*x**T + A, !> !> where alpha is a real scalar, x is an n element vector and A is an !> n by n symmetric matrix\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array A is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of A !> is to be referenced\&. !> !> UPLO = 'L' or 'l' Only the lower triangular part of A !> is to be referenced\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> On entry, N specifies the order of the matrix A\&. !> N must be at least zero\&. !> .fi .PP .br \fIALPHA\fP .PP .nf !> ALPHA is DOUBLE PRECISION\&. !> On entry, ALPHA specifies the scalar alpha\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is DOUBLE PRECISION array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) )\&. !> Before entry, the incremented array X must contain the n !> element vector x\&. !> .fi .PP .br \fIINCX\fP .PP .nf !> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X\&. INCX must not be zero\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is DOUBLE PRECISION array, dimension ( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array A must contain the upper !> triangular part of the symmetric matrix and the strictly !> lower triangular part of A is not referenced\&. On exit, the !> upper triangular part of the array A is overwritten by the !> upper triangular part of the updated matrix\&. !> Before entry with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array A must contain the lower !> triangular part of the symmetric matrix and the strictly !> upper triangular part of A is not referenced\&. On exit, the !> lower triangular part of the array A is overwritten by the !> lower triangular part of the updated matrix\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program\&. LDA must be at least !> max( 1, n )\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> Level 2 Blas routine\&. !> !> -- Written on 22-October-1986\&. !> Jack Dongarra, Argonne National Lab\&. !> Jeremy Du Croz, Nag Central Office\&. !> Sven Hammarling, Nag Central Office\&. !> Richard Hanson, Sandia National Labs\&. !> .fi .PP .RE .PP .PP Definition at line \fB131\fP of file \fBdsyr\&.f\fP\&. .SS "subroutine ssyr (character uplo, integer n, real alpha, real, dimension(*) x, integer incx, real, dimension(lda,*) a, integer lda)" .PP \fBSSYR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SSYR performs the symmetric rank 1 operation !> !> A := alpha*x*x**T + A, !> !> where alpha is a real scalar, x is an n element vector and A is an !> n by n symmetric matrix\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array A is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of A !> is to be referenced\&. !> !> UPLO = 'L' or 'l' Only the lower triangular part of A !> is to be referenced\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> On entry, N specifies the order of the matrix A\&. !> N must be at least zero\&. !> .fi .PP .br \fIALPHA\fP .PP .nf !> ALPHA is REAL !> On entry, ALPHA specifies the scalar alpha\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is REAL array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) )\&. !> Before entry, the incremented array X must contain the n !> element vector x\&. !> .fi .PP .br \fIINCX\fP .PP .nf !> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X\&. INCX must not be zero\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is REAL array, dimension ( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array A must contain the upper !> triangular part of the symmetric matrix and the strictly !> lower triangular part of A is not referenced\&. On exit, the !> upper triangular part of the array A is overwritten by the !> upper triangular part of the updated matrix\&. !> Before entry with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array A must contain the lower !> triangular part of the symmetric matrix and the strictly !> upper triangular part of A is not referenced\&. On exit, the !> lower triangular part of the array A is overwritten by the !> lower triangular part of the updated matrix\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program\&. LDA must be at least !> max( 1, n )\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> Level 2 Blas routine\&. !> !> -- Written on 22-October-1986\&. !> Jack Dongarra, Argonne National Lab\&. !> Jeremy Du Croz, Nag Central Office\&. !> Sven Hammarling, Nag Central Office\&. !> Richard Hanson, Sandia National Labs\&. !> .fi .PP .RE .PP .PP Definition at line \fB131\fP of file \fBssyr\&.f\fP\&. .SS "subroutine zher (character uplo, integer n, double precision alpha, complex*16, dimension(*) x, integer incx, complex*16, dimension(lda,*) a, integer lda)" .PP \fBZHER\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZHER performs the hermitian rank 1 operation !> !> A := alpha*x*x**H + A, !> !> where alpha is a real scalar, x is an n element vector and A is an !> n by n hermitian matrix\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array A is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of A !> is to be referenced\&. !> !> UPLO = 'L' or 'l' Only the lower triangular part of A !> is to be referenced\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> On entry, N specifies the order of the matrix A\&. !> N must be at least zero\&. !> .fi .PP .br \fIALPHA\fP .PP .nf !> ALPHA is DOUBLE PRECISION\&. !> On entry, ALPHA specifies the scalar alpha\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is COMPLEX*16 array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) )\&. !> Before entry, the incremented array X must contain the n !> element vector x\&. !> .fi .PP .br \fIINCX\fP .PP .nf !> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X\&. INCX must not be zero\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension ( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array A must contain the upper !> triangular part of the hermitian matrix and the strictly !> lower triangular part of A is not referenced\&. On exit, the !> upper triangular part of the array A is overwritten by the !> upper triangular part of the updated matrix\&. !> Before entry with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array A must contain the lower !> triangular part of the hermitian matrix and the strictly !> upper triangular part of A is not referenced\&. On exit, the !> lower triangular part of the array A is overwritten by the !> lower triangular part of the updated matrix\&. !> Note that the imaginary parts of the diagonal elements need !> not be set, they are assumed to be zero, and on exit they !> are set to zero\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program\&. LDA must be at least !> max( 1, n )\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> Level 2 Blas routine\&. !> !> -- Written on 22-October-1986\&. !> Jack Dongarra, Argonne National Lab\&. !> Jeremy Du Croz, Nag Central Office\&. !> Sven Hammarling, Nag Central Office\&. !> Richard Hanson, Sandia National Labs\&. !> .fi .PP .RE .PP .PP Definition at line \fB134\fP of file \fBzher\&.f\fP\&. .SS "subroutine zsyr (character uplo, integer n, complex*16 alpha, complex*16, dimension( * ) x, integer incx, complex*16, dimension( lda, * ) a, integer lda)" .PP \fBZSYR\fP performs the symmetric rank-1 update of a complex symmetric matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZSYR performs the symmetric rank 1 operation !> !> A := alpha*x*x**H + A, !> !> where alpha is a complex scalar, x is an n element vector and A is an !> n by n symmetric matrix\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array A is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of A !> is to be referenced\&. !> !> UPLO = 'L' or 'l' Only the lower triangular part of A !> is to be referenced\&. !> !> Unchanged on exit\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> On entry, N specifies the order of the matrix A\&. !> N must be at least zero\&. !> Unchanged on exit\&. !> .fi .PP .br \fIALPHA\fP .PP .nf !> ALPHA is COMPLEX*16 !> On entry, ALPHA specifies the scalar alpha\&. !> Unchanged on exit\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is COMPLEX*16 array, dimension at least !> ( 1 + ( N - 1 )*abs( INCX ) )\&. !> Before entry, the incremented array X must contain the N- !> element vector x\&. !> Unchanged on exit\&. !> .fi .PP .br \fIINCX\fP .PP .nf !> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X\&. INCX must not be zero\&. !> Unchanged on exit\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension ( LDA, N ) !> Before entry, with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array A must contain the upper !> triangular part of the symmetric matrix and the strictly !> lower triangular part of A is not referenced\&. On exit, the !> upper triangular part of the array A is overwritten by the !> upper triangular part of the updated matrix\&. !> Before entry, with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array A must contain the lower !> triangular part of the symmetric matrix and the strictly !> upper triangular part of A is not referenced\&. On exit, the !> lower triangular part of the array A is overwritten by the !> lower triangular part of the updated matrix\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program\&. LDA must be at least !> max( 1, N )\&. !> Unchanged on exit\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB134\fP of file \fBzsyr\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.